Failure Analysis of Laryngoscope Made of Acrylonitrile Butadiene Styrene

Jump To References Section

Authors

  • Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India. ,IN
  • Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India. ,IN
  • Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India. ,IN
  • Nitte Meenakshi Institute of Technology, Bengaluru, Karnataka, India. ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/33757

Keywords:

Laryngoscope, Acrylonitrile Butadiene Styrene, Poly Lactic Acid, Failure Analysis.

Abstract

The objective of this paper is to ascertain the failure analysis of laryngoscope made of ABS (Acrylonitrile Butadiene Styrene) material for application in laryngoscope. For failure analysis the von-mises stress distribution was investigated using commercially available software. For experimental validation and comparison ASTM standard specimens of two types of materials ABS and PLA (Poly lactic acid) material are fabricated and subjected to tensile testing in Electronic Tensometer a mini universal testing machine of capacity 2 KN. The 3D-CAD model of laryngoscope made of ABS materials is then used for the failure analysis for prediction and evaluation of its intended future application and commercialization.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-05-24

How to Cite

Nayak, S., Shetty, P. B., Reddy, J. S., & Naveen, G. J. (2023). Failure Analysis of Laryngoscope Made of Acrylonitrile Butadiene Styrene. Journal of Mines, Metals and Fuels, 71(3), 446–449. https://doi.org/10.18311/jmmf/2023/33757

Issue

Section

Articles

 

References

J. D. Moore, (1973): Acrylonitrile- butadiene- styrene (ABS) - A review. Composites, Volume 4, Issue 3, Pages 118-130

Zixiang Weng, Jianlei Wang, T. Senthil ,LixinWu, (2016): Mechanical and thermal properties of ABS/ montmorillonite nanocomposites for fused deposition modelling 3D printing. Materials & Design, Volume 102, Pages 276-283

A Jahnke, (2020): A discussion of single-use plastics in medical settings. Reinforced Plastics, Volume 64, Issue 4, Pages 190-192.

Kamaljit S Boparai, Rupinder Singh, Ranvijay Kumar (2019): Development and Applications of Composites of Polymeric and Biodegradable Materials Since 1990. Reference Module in Materials Science and Materials Engineering.doi.org/10.1016/B978-0-12-803581-8.11580-2

M. Anthony Xavior, D. Nishanth, N. Navin Kumar, P. Jeyapandiarajan (2020): Synthesis and Testing of FGM made of ABS Plastic Material. Materials Today-Proceedings,Volume 22, Part 4, Pages 1838-1844.

Diana Popescua, Florin Baciu, Daniel Vlãsceanu, Cosmin Mihai Cotruþ, Rodica Marinescu (2020): Effects of multiple sterilizations and natural aging on the mechanical behaviour of 3D-printed ABS. Mechanics of Materials, Volume 148, 103423

Jacek Andrzejewski, Amar K. Mohanty, Manjusri Misra. (2020): Development of hybrid composites reinforced with biocarbon/carbon fiber system. The comparative study for PC, ABS and PC/ABS based materials, The comparative study for PC, ABS and PC/ABS based materials, Composites Part B: Engineering, Volume 200, 108319.

Dhinesh S.K, Arun Prakash S., Senthil Kumar K.L., Megalingam A. (2021): Study on flexural and tensile behaviour of PLA, ABS and PLA-ABS materials. Materials Today-Proceedings, Volume 45, Part 2, Pages 1175-1180

Makara Lay, Nuur Laila Najwa Thajudin, Zuratul Ain Abdul Hamid, Arjulizan Rusli, Muhammad Khalil Abdullah, Raa Khimi Shuib. (2019): Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modelling and injection moulding. Composites Part B: Engineering, Volume 176, 107341

Vikas Sharma, Sahil Kapoor, Meenakshi Goyal, Prashant Jindal (2020): Enhancement of the mechanical properties of graphene-based acrylonitrile butadiene styrene (ABS) nanocomposites, Materials Today-Proceedings, doi.org/ 10.1016/j.matpr.2020.05.155

A.S. de León, A. Domínguez-Calvo, S.I. Molina (2019): Materials with enhanced adhesive properties based on acrylonitrile-butadiene-styrene (ABS)/thermoplastic polyurethane (TPU) blends for fused filament fabrication (FFF). Materials & Design, Volume 182, 108044

Md. Fazlay Rabbi, Vijaya Chalivendra (2020): Strain and damage sensing in additively manufactured CB/ABS polymer composites. Polymer Testing, Volume 90, 106688

Magdalena Ziabka; Micha³ Dziadek; ElzbietaMenaszek. (2018): Biocompatibility of Poly(acrylonitrile-butadiene-styrene) Nanocomposites Modified with Silver Nanoparticles. Polymers, Volume 10, Issue 11,10.3390/ polym10111257

Donald M. Kulich, S. K. Gaggar, V. Lowry, R. Stepien. (2003): Acrylonitrile–Butadiene–Styrene (Abs) Polymers. Kirk-Othmer Encyclopedia of Chemical Technology.doi.org/ 10.1002/0471238961.01021911211209.a01.pub2

Vishal Saroha, B. S. Pabla, Sukhdev Singh Bhogal. (2019): Characterization of ABS for Enhancement of Mechanical Properties. Int. Journal of Innovative Technology and Exploring Engg. ISSN: 2278-3075, Volume 8 Issue-10.

Chevrychkina A. A., Volkov G. A., Estifeev A. D. (2017): An experimental investigation of the strength characteristics of ABS plastic under dynamic loads. Procedia Structural Integrity, 10.1016/j.prostr.2017.11.043, (283-285)

Sridharan Kannan, Manoharan Ramamoorthy. (2020): Mechanical characterization and experimental modal analysis of 3D Printed ABS, PC and PC-ABS materials, Materials Research Express, 10.1088/2053-1591/ab6a48

Anoosha N M, Sachin B, Hemanth B R, Pavan Kumar K P, Yathisha N.(2018): Tensile test & FEM Analysis of ABS material using FDM Technique. Int. Journal of Innovative Research in Science, Engineering and Technology, Vol. 7, Issue 6. DOI:10.15680/IJIRSET.2018.0706040

Nay Win Khun, Erjia Liu.(2013): Thermal, mechanical and tribological properties of polycarbonate/acrylonitrile-butadiene-styrene blends, Journal of Polymer Engineering, doi.org/10.1515/polyeng-2013-0039

Mounika Gudeppu, Jesudas Balasubramanian, Pramila Bakthavachalam, Logesh Chokkalingam, Prakash Srinivasan, Timiri Shanmugam.(2020): Biocompatibility and Toxicology. Trends in Development of Medical Devices, doi/10.1016/B978-0-12-820960-8.00007-1

Ozdil D, Wimpenny I, Aydin H, Yang Y. (2017): Biocompatibility of biodegradable medical polymers. Science and Principles of Biodegradable and Bioresorbable Medical Polymers. Material and properties, pp. 379-414. doi.org/10.1016/B978-0-08-100372-5.00013-1

Masoud Mozafari, Masayuki Yamato, Seeram Ramakrishna. (2019): Editorial overview: Biomaterials: On the biocompatibility of biomaterials. Current Opinion in Biomedical Engineering,Volume 10, Pages A1-A3.

Buddy D. Ratner, Frederick J. Schoen. (2012) The Concept and Assessment of Biocompatibility, (843-849) :An Introduction to Materials in Medicine 3rd Edition. Biomaterials Science, eBook ISBN: 9780080877808

JM Anderson (2017): Biocompatibility and the Relationship to Standards: Meaning and Scope of Biomaterials Testing. Reference Module in Materials Science and Materials Engineering Comprehensive Biomaterials II, Volume 4, Pages 7-29.

Sebastian Bauer, Patrik Schmuki, Klaus von der Mark, Jung Park. (2013): Engineering biocompatible implant surfaces Part I: Materials and surfaces, Progress in Materials Science, Volume 58, Issue 3, 58 261–326.

Mariana T. Farcas, Aleksandr B. Stefaniak, Alycia K. Knepp, Lauren Bowers, William K. Mandler, Michael Kashon, Stephen R. Jackson, Todd A. Stueckle, Jenifer D. Sisler, Sherri A. Friend, ChaolongQi, Duane R. Hammond, Treye A. Thomas, Joanna Matheson, Vincent Castranov, Yong Qian.(2019): Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity. Toxicology Letters, 317:1-12. doi: 10.1016/j.toxlet.2019.09.013