Temperature Dependant Bandgap Tuning of GaAs, AlAs, InAs, and InP Binaries Grown on different Substrates
DOI:
https://doi.org/10.18311/jmmf/2023/34871Keywords:
AlAs, Band Structures, GaAs, InAs, K.P Theory, Substrate EffectsAbstract
This article carries out the temperature-dependent study of the band structures of bulk binaries such as AlAs, GaAs, InAs, and InP grown on different substrates thus showing the combined effect of substrate and temperature on the bandgaps of the binary systems under study. For the calculations of the band structures of the binary systems grown on different substrates, the k.p technique has been used. The results have been analyzed successfully. For all the binaries, it has been found that the bandgap is reduced with increasing temperature but the rate of reduction with temperature is different for dissimilar substrates. The outcomes of the calculations for the band structures of binaries grown on lattice-matched and unmatched substrates are very useful for understanding of device performance.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2023-10-21
Published 2023-11-10
References
Mudd GW, Svatek SA, Ren T, Patanè A, Makarovsky O, Eaves L, Beton PH, et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Advanced Materials. 2013; 25(40):5714-8. https://doi.org/10.1002/ adma.201302616 DOI: https://doi.org/10.1002/adma.201302616
Lei D, Shen YT, Feng YY, Feng W. Recent progress in the fields of tuning the band gap of quantum dots. Science China Technological Sciences. 2012; 55:903-12. https:// doi.org/10.1007/s11431-011-4717-1 DOI: https://doi.org/10.1007/s11431-011-4717-1
Zhu H, Erbing A, Wu H, Man GJ, Mukherjee S, Kamal C, Johansson MB, Rensmo H, Odelius M, Johansson EMJ. Tuning the bandgap in silver bismuth iodide materials by partly substituting bismuth with antimony for improved solar cell performance. ACS Applied Energy Materials. 2020; 3(8):7372-82. https://doi.org/10.1021/ acsaem.0c00712 DOI: https://doi.org/10.1021/acsaem.0c00712
Khan MI, Hasan PMZ, Danish EY, Aslam M, Kattayat S, Kumar S, Dalela S, Ahmad MA, Alvi PA. Fine tunability of optical gain characteristics of InGaAs/ GaAsSb/InAlAs nano-heterostructure under the combined effect of field and temperature. Superlattices and Microstructures. 2021; 156:106982. https://doi. org/10.1016/j.spmi.2021.106982 DOI: https://doi.org/10.1016/j.spmi.2021.106982
Riyaj Md, Quraishi AM, Hasan PMZ, Darwesh R, Kattayat S, Josey S, Kumar S, Ezzeldien M, Rathi A, Alvi PA. Tuning the responsible parameters for gain characteristics of the novel type-II D-QW (InGaAs) heterostructure. Materials Science in Semiconductor Processing. 2022; 140:106377. https://doi.org/10.1016/j. mssp.2021.106377 DOI: https://doi.org/10.1016/j.mssp.2021.106377
Singh AK, Rathi A, Riyaj Md, Bhardwaj G, Alvi PA. Optical gain tuning within IR region in type-II In0.5Ga0.5As0.8P0.2/GaAs0.5Sb0.5 nano-scale heterostructure under external uniaxial strain. Superlattices and Microstructures. 2017; 111:591-602. https://doi. org/10.1016/j.spmi.2017.07.014 DOI: https://doi.org/10.1016/j.spmi.2017.07.014
Kumari K, Aljawfi RN, Vij A, Chae KH, Hashim M, Alvi PA, Kumar S. Band gap engineering, electronic state and local atomic structure of Ni-doped CeO2 nanoparticles. Journal of Materials Science: Materials in Electronics. 2019; 30:4562-71. https://doi.org/10.1007/ s10854-019-00746-x DOI: https://doi.org/10.1007/s10854-019-00746-x
De Bastiani M, Mirabelli AJ, Hou Y, Gota F, Aydin E, Allen TG, Troughton J, et al. Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nature Energy. 2021; 6(2):167-75. https:// doi.org/10.1038/s41560-020-00756-8 DOI: https://doi.org/10.1038/s41560-020-00756-8
Zeitouny J, Katz EA, Dollet A, Vossier A. Band gap engineering of multi-junction solar cells: Effects of series resistances and solar concentration. Scientific Reports. 2017; 7(1):1766. https://doi.org/10.1038/s41598-017- 01854-6 DOI: https://doi.org/10.1038/s41598-017-01854-6
Alvi PA, Gupta S, Sharma M, Jha S, Rahman F. Computational modeling of novel InN/Al0.30In0.70N multilayer nano-heterostructure. Physica E: Low-Dimensional Systems and Nanostructures. 2011; 44(1):49-55. https://doi.org/10.1016/j. physe.2011.07.003 DOI: https://doi.org/10.1016/j.physe.2011.07.003
Alvi PA, Gupta S, Siddiqui MJ, Sharma G, Dalela S. Modeling and simulation of GaN/Al0.3Ga0.7N new multilayer nano-heterostructure. Physica B: Condensed Matter. 2010; 405(10):2431-5. https://doi.org/10.1016/j. physb.2010.03.002 DOI: https://doi.org/10.1016/j.physb.2010.03.002
Varshni YP. Temperature dependence of the energy gap in semiconductors. Physica. 1967; 34(1):149-54. https:// doi.org/10.1016/0031-8914(67)90062-6 DOI: https://doi.org/10.1016/0031-8914(67)90062-6
Kim K, Lambrecht WRL, Segall B, Schilfgaarde MV. Effective masses and valence-band splittings in GaN and AlN. Physical Review B. 1997; 56(12):7363. https://doi. org/10.1103/PhysRevB.56.7363 DOI: https://doi.org/10.1103/PhysRevB.56.7363
Lee J, Spector HN, Chou WC, Huang YS. Optical absorption coefficient of quantum wires in strain and electric fields with intermixing interfaces. Physical Review B. 2005; 72(12):125329. https://doi.org/10.1103/ PhysRevB.72.125329 DOI: https://doi.org/10.1103/PhysRevB.72.125329