A Review of Friction Stir Welding and Processing on Aluminium Alloys
DOI:
https://doi.org/10.18311/jmmf/2023/34919Keywords:
AA3000 Series, Flaws, Friction Stir Welding, Microstructures, Optimum Point, Solid-State Joint, Taguchi TechniqueAbstract
To combine extra-strong aircraft aluminium alloys that are typically difficult to fuse using standard fusing methods of welding, a unique sustainable solid-state combining method known as Friction Stir Welding (FSW) is used. In contrast to certain other solid-state combining techniques, friction stir welding involves a third intimate contact with the tools, which creates extra interfacing areas. Ultimately, all of these areas merge under the application of heat and pressure to produce a solid-state joint. This systematic review discusses the fundamental principles of friction stir welding and processing on AA3000 series material, the creation of microstructures, the sensible processing conditions, frequent FSW flaws, as well as some application fields. Additionally, the article will cover a few FSW process variations; including friction stir processing and friction stir spot welding. The processing parameters were determined to be at their best using the Taguchi Technique (TT). The research also examined the microstructures on FSW specimens at the optimum point, welding zone hardness, and union effectiveness of the FSW joint. The efficiency and dependability of welded joints for operations in the shipbuilding industry may be shown by joint reliability. That was examined under ideal circumstances, and it turned out to be 85%.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-01-10
Published 2023-12-01
References
Elangovan K, Balasubramanian V, Babu S. Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model. Materials and Design. 2009; 30:188-93. https://doi.org/10.1016/j.matdes.2008.04.037
Muthukrishnan M, Marimuthu K. Some studies on mechanical properties of friction stir butt-welded Al-6082- T6 Plates. IEEE. 2010. https://doi.org/10.1109/FAME.2010.5714833 DOI: https://doi.org/10.1109/FAME.2010.5714833
Zhao YT, San-bao L, Wu L, Fu-xing Q. The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy. Materials Letters. 2005; 59:2948-52. https://doi.org/10.1016/j.matlet.2005.04.048 DOI: https://doi.org/10.1016/j.matlet.2005.04.048
Kumbhar NT, Bhanumurthy K. Friction stir welding of Al 6061 Alloy. Asian J Exp Sci. 2008; 22(2): 63-7.
Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering R. 2005; 50: 1-78. https://doi.org/10.1016/j.mser.2005.07.001
Zhang YN, Cao X, Larose S, Wanjara P. Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly. 2012; 51. https://doi.org/10.1179/1879139512Y.0000000015
Elangovan K, Balasubramanian V. Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Materials Science and Engineering A. 2007; 459: 7-18. https://doi.org/10.1016/j.msea.2006.12.124
Rai R, Bhadeshia DH, DebRoy T. Review: Friction stir welding tools. Science and Technology of Welding and Joining. 2011; 16. https://doi.org/10.1179/1362171811Y.0000000023 DOI: https://doi.org/10.1179/1362171811Y.0000000023
Mishra RS, Mahoney MW. Friction stir welding and processing materials park. OH, ASM International. 2007.
Padmanaban G, Balasubramanian V. Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy- An experimental approach. Materials and Design. 2009; 30: 2647-56. https://doi.org/10.1016/j.matdes.2008.10.021 DOI: https://doi.org/10.1016/j.matdes.2008.10.021
Ceschini L, Boromei I, Minak G, Morri A, Tarterini F. Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite. Composites Science and Technology. 2007; 67:605-15. https://doi.org/10.1016/j.compscitech.2006.07.029 DOI: https://doi.org/10.1016/j.compscitech.2006.07.029
Gopalakrishnan S, Murugan N. Prediction of tensile strength of friction stir welded aluminium matrix TiC particulate reinforced composite. Materials and Design. 2011; 32:462-7. https://doi.org/10.1016/j.matdes.2010.05.055 DOI: https://doi.org/10.1016/j.matdes.2010.05.055
Threadgill PL, Leonard A. Macro and microstructural features of friction stir welds in various materials. TWI Rept. 1999.
Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction stir welding – Process, weldment structure and properties. Progress in Materials Science. 2008; 53:980-1023. https://doi.org/10.1016/j.pmatsci.2008.05.001 DOI: https://doi.org/10.1016/j.pmatsci.2008.05.001
Liu HJ, Fuji H. Mechanical properties of friction stir welded joints of 1050-H24 aluminium alloys. Sci Technol Weld Joining. 2003; 8(6):450-4. https://doi.org/10.1179/136217103225005598 DOI: https://doi.org/10.1179/136217103225005598
Hussain AK, Quadri SAP. Evaluation of parameters of friction stir welding for aluminium Aa6351 alloy. International Journal of Engineering Science and Technology. 2010; 2(10):5977-84.
Rajakumar S, Muralidharan C, Balasubramanian V. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Materials and Design. 2011; 32:535-49. https://doi.org/10.1016/j.matdes.2010.08.025
Nami H, Adgi H, Sharifitabar M, Shamabadi H. Microstructure, and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite. Materials and Design. 2011; 32:976-83. https://doi.org/10.1016/j.matdes.2010.07.008 DOI: https://doi.org/10.1016/j.matdes.2010.07.008
Karthikeyan L, Puviyarasan M, Sharath Kumar S, Balamugundan B. Experimental studies on friction stir welding of AA2011 and AA6063 aluminium alloys. International Journal of Advanced Engineering Technology. 2012; 3(4):144-5.
Lee WonBae, Yeon YM, Jung SB. Effect of friction welding parameters on mechanical and metallurgical properties of aluminium alloy 5052–A36 steel joint. Material Science Technology. 2003; 19:1513. https://doi.org/10.1179/026708303225001876 DOI: https://doi.org/10.1179/026708303225001876
Chen YC, Liu H, Feng J. Friction stir welding characteristics of different heat-treated-state 2219 aluminium alloy plates. Mater Science Engineering. 2006; 420:21-5. https://doi.org/10.1016/j.msea.2006.01.029 DOI: https://doi.org/10.1016/j.msea.2006.01.029
Kazuhiro N, Young Gon K, Masao U. Friction stir welding of Mg-Al-Zn alloys. Trans JWRI. 2002; 31:141-6.
Ouyang JH, Kovacevic R. Material low during Friction Stir Welding (FSW) of the same and dissimilar aluminium alloys. Journal of Material Engineering Performance. 2002; 11(1):51-63. https://doi.org/10.1007/s11665-002-0008-0 DOI: https://doi.org/10.1361/105994902770344394
Razal AR, Manisekar K, BalasubramanianV. Effect of axial force on microstructure and tensile properties of friction stir welded AZ61A magnesium alloy. Transactions of Non-ferrous Metals Society of China. 2011; 21:974-84. https://doi.org/10.1016/S1003-6326(11)60809-1 DOI: https://doi.org/10.1016/S1003-6326(11)60809-1
Karthikeyan M, Dawood AKS. influence of tool design on the mechanical properties and microstructure in friction stir welding of AA 6351 aluminium alloy. An International Journal of Engineering Science and Technology. 2012; 2(2).
Palanivel R, Mathews PK, Murugan N. Influences of tool pin profile on the mechanical and metallurgical properties of friction stir welding of dissimilar aluminium alloy. International Journal of Engineering Science and Technology. 2010; 2(6):2109-15.
Patel AKM, Ghetiya BND, Makvana CSJ. Influence of friction stir welding parameters on tensile strength of AA8011 aluminium. Conference proceedings.
Venkateswarlu D, Mandal NR, Mahapatra MM, Harsh SP. Tool design effects for FSW of AA7039. Welding Journal. 2013; 92.
Cavaliere P, Nobile R, Panella F, Squillace A. Mechanical microstructural behaviour of 2024-7075 aluminium International Journal of Machine Tools and Manufacture. 2006; 46:588-94. https://doi. org/10.1016/j.ijmachtools.2005.07.010 DOI: https://doi.org/10.1016/j.ijmachtools.2005.07.010
Kumar K, Kailas SV. The role of friction stir welding tool on the material low and weld formation. Material Science and Engineering. 2008; 485:367-74. https://doi.org/10.1016/j.msea.2007.08.013
William JA. Friction stirs joining: Characteristic defects. Advanced Materials Processing Center. 2003.
Dilger DE. Apple slims down the iMac by 40% with ‘friction stir welding’ and ditching the disc drive. 2012. Retrieved from Articles/12/10/24/apple-slims-down-imac-40-with-frictionstir-welding-ditching-the-disc-drive [Online]Available: http://www.appleinsider.com/ articles/12/10/24.
Smith CB, Hinrichs JF, Ruehl PC. Friction stir and friction stir spot welding – Lean. Mean and Green. 2012. [Online] Available: www.frictionstirlink/Pub14AwssmcLeanMeanGreen.
Misra RS, Murray W. Mahoney: Friction stir welding and processing. 2007; 6-19.
Mehta M, Arora A, De A, Debroy T. Tool geometry for friction stir welding - Optimum shoulder diameter. 2011; 3. https://doi.org/10.1007/s11661-011-0672-5 DOI: https://doi.org/10.1007/s11661-011-0672-5
Bisadi H, Tour M, Tayakoli A. The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 alloy lap joint. American Journal of Materials Science. 2011; 93-7. https://doi.org/10.5923/j.materials.20110102.15 DOI: https://doi.org/10.5923/j.materials.20110102.15
Thomas WM, Nicholas ED, Needham JC, Murch MG, Smith PT, Dawes CJ. Friction-stir butt welding, GB Patent No. 9125978.8. International Patent Application No. PCT/GB92/02203; 1991.
Elangovan K, Balasubramanian V. Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Materials Science and Engineering, 2007; 459:7-18. https://doi.org/10.1016/j.msea.2006.12.124 DOI: https://doi.org/10.1016/j.msea.2006.12.124
Kumbhar NT, Bhanumurthy K. Friction stir welding of Al 6061 alloy. Asian J Exp Sci. 2008; 22:63-74.
Zhang YN, Cao X, Larose S and Wanjara P. Review of tools for friction stir welding and processing. Canadian Metallurgical Quarterly. 2012; 51. https://doi.org/10.1179/1879139512Y.0000000015 DOI: https://doi.org/10.1179/1879139512Y.0000000015
Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering. 2005; 50:1-78. https://doi.org/10.1016/j.mser.2005.07.001 DOI: https://doi.org/10.1016/j.mser.2005.07.001
Kumar K, Kailas SV. The role of friction stir welding tool on the material flow and weld formation, Materials Science and Engineering. 2008; 367-74. https://doi.org/10.1016/j.msea.2007.08.013 DOI: https://doi.org/10.1016/j.msea.2007.08.013
Leonard AJ. Microstructure and ageing behaviour of FSW in Al alloys 2014A –T651 and 7075- T651, 2nd international symposium on FSW, Gothenburg, Sweden; 2000.
Soundarajan V, Yarrapareddy E, Kovacevic R. Investigation of the friction stir lap welding of aluminium alloys AA 5182 and AA 6022. Journal of Material Engineering and Performance. 2007; 16(4):477- 84. https://doi.org/10.1007/s11665-007-9081-8 DOI: https://doi.org/10.1007/s11665-007-9081-8
HungTra T. Effect of weld parameters on mechanical properties of the friction stir welding aa6063-t5.
Karthikeyan P, Mahadevan K. Study on the weld quality of the friction stir welded Al 6063 plates using square and pentagonal profiled tools. Journal of Applied Sciences. 2012; 12(10):1026-31. https://doi.org/10.3923/jas.2012.1026.1031 DOI: https://doi.org/10.3923/jas.2012.1026.1031
Karthikeyan L, Puviyarasan M, Sharath SK, Balamugundan B. Experimental studies on friction stir welding of AA2011 and AA6063 aluminium alloys. International Journal of Advanced Engineering Technology. 2012; 3(4):144-5.
Pumchan W. The influences of friction stir welding on the microstructure and hardness of aluminium 6063 and 7075. International Conference on Advanced Materials Engineering; 2011. p. 15.
Elangovan K, Balasubramanian V, Babu S. Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model. Materials and Design. 2009; 188-93. https://doi.org/10.1016/j.matdes.2008.04.037 DOI: https://doi.org/10.1016/j.matdes.2008.04.037
Rajakumar S, Muralidharan C, Balasubramanian V. Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints. Materials and Design. 2011; 535-49. https://doi.org/10.1016/j.matdes.2010.08.025 DOI: https://doi.org/10.1016/j.matdes.2010.08.025
Shah LH, Othman NH, Gerlich A. Review of research progress on aluminium-magnesium dissimilar friction stir welding. Sci Technol Weld Join. 2018; 233(3):256-70. https://doi.org/10.1080/13621718.2017.1370193 DOI: https://doi.org/10.1080/13621718.2017.1370193
Shah IA, Khan R, Koloor SSR, Petru M, Badshah S, Ahmad S, Amjad M. Finite element analysis of the ballistic impact on auxetic sandwich composite human body armour. Materials. 2022; 15:2064. https://doi.org/10.3390/ma15062064 PMid:35329516 PMCid: PMC8950186 DOI: https://doi.org/10.3390/ma15062064
Shokravi H, Mohammadyan-Yasouj SE, Koloor SSR, Petru M, Heidarrezaei M. Effect of alumina additives on mechanical and fresh properties of self-compacting concrete: A review. Processes. 2021; 9:554. https://doi.org/10.3390/pr9030554 DOI: https://doi.org/10.3390/pr9030554
Mazlan S, Yidris N, Koloor SSR, Petru M. Experimental and numerical analysis of fatigue life of aluminium Al 2024-T351 at elevated temperature. Metals. 2020; 10:1581. https://doi.org/10.3390/met10121581 DOI: https://doi.org/10.3390/met10121581
Koilraj M, Sundareswaran V, Vijayan S, Rao SK. Friction stirs welding of dissimilar aluminium alloys AA2219 to AA5083– Optimization of process parameters using the Taguchi technique. Mater. Des. 2012; 42:1-7. https://doi.org/10.1016/j.matdes.2012.02.016 DOI: https://doi.org/10.1016/j.matdes.2012.02.016
Aamir M, Tolouei-Rad M, Giasin K, Vafadar A. Feasibility of tool configuration and the effect of tool material, and tool geometry in multi-hole simultaneous drilling of Al2024. Int J Adv Manuf Technol. 2020; 111:861-79. https://doi.org/10.1007/s00170-020-06151-7 DOI: https://doi.org/10.1007/s00170-020-06151-7
Sato YS, Urata M, Kokawa H, Ikeda K. Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater Sci Eng. 2003; 354:298-305. https://doi.org/10.1016/S0921-5093(03)00008-X DOI: https://doi.org/10.1016/S0921-5093(03)00008-X
Yong-Jai K, Seong-Beom S, Dong-Hwan P. Friction stir welding of 5052 aluminium alloy plates. Trans Nonferrous Met Soc China. 2009; 19:s23-7. https://doi.org/10.1016/S1003-6326(10)60239-7
Yong-Jai K, Seong-Beom S, Dong-Hwan P. Friction stir welding of 5052 aluminium alloy plates. Trans Nonferrous Met Soc China. 2009; 19:s23-7. https://doi.org/10.1016/S1003-6326(10)60239-7 DOI: https://doi.org/10.1016/S1003-6326(10)60239-7
Hosseinabadi OF, Khedmati MR. A review of the ultimate strength of aluminium structural elements and systems for marine applications. Ocean Eng. 2021; 232:109153. https://doi.org/10.1016/j.oceaneng.2021.109153 DOI: https://doi.org/10.1016/j.oceaneng.2021.109153
Cheng Y, Hu Y, Xu J, Yu L, Huang T, Zhang H. Studies on microstructure and properties of TiB2-Al3Ti ceramic particles reinforced spray-formed 7055 aluminium alloy fusion welded joints. J Mater Res Technol. 2022; 19:1298-311. https://doi.org/10.1016/j.jmrt.2022.05.116 DOI: https://doi.org/10.1016/j.jmrt.2022.05.116
Dawood H, Mohammed KS, Rahmat A, Uday M. Effect of small tool pin profiles on microstructures and mechanical properties of 6061 aluminium alloy by friction stir welding. Trans Nonferrous Met Soc China. 2015; 25:2856-65. https://doi.org/10.1016/S1003-6326(15)63911-5 DOI: https://doi.org/10.1016/S1003-6326(15)63911-5
Msomi V, Mbana N, Mabuwa S. Microstructural analysis of the friction stir welded 1050-H14 and 5083-H111 aluminium alloys. Mater Today Proc. 2020; 26:189-92. https://doi.org/10.1016/j.matpr.2019.10.038 DOI: https://doi.org/10.1016/j.matpr.2019.10.038
Ali MH, Wadallah HM, Ibrahim MA, Alomar OA. Improving the microstructure and mechanical properties of aluminium alloy joints by adding SiC particles during the friction stir welding process. Metallogr. Microstruct. Anal. 2021; 10:302-13. https://doi.org/10.1007/s13632-021-00743-9 DOI: https://doi.org/10.1007/s13632-021-00743-9
Krishnaiah K, Shahabudeen P. Applied design of experiments and Taguchi methods. PHI Learning Pvt. Ltd.: Dehli, India; 2012.