Green Production of Zinc Oxide Nano Particles by using Plant Extract: A Review
DOI:
https://doi.org/10.18311/jmmf/2023/35231Keywords:
Green Production, Nano Zinc Oxide, Nano Particles, Plant ExtractAbstract
Nano scale materials are being used extensively due to their properties and applications as they acquire large surface area to volume ratio. Green approach of nano particles has grown in popularity because it is more convenient, non-toxic, and dependable than chemical synthesis methods. Researchers have intensively explored the manufacture and applications of zinc oxide nano particles due to their numerous applications in semiconductor devices catalysis, imaging, bio sensing, cancer therapy, and drug administration. Researchers have intensively explored the manufacture and applications of zinc oxide nanoparticles due to their numerous applications in semiconductor devices catalysis, imaging, biosensing, cancer therapy, and drug administration. By using the bio reduction approach, the natural extracts from plant parts such as seeds, roots, stems, leaves, or flowers can be utilized to produce nano particles without the usage of chemicals. Different morphologies of the zinc oxide nanoparticle can be created. This article gives a thorough examination of the manufacture and applications of zinc oxide nano particles using a green technology approach.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abbasi E, et al. Silver Nanoparticles: Synthesis methods, bio-applications and properties. Crit Rev. Microbial. 2016; 42(2):173-80.
Tiwari DK, Behari J, Sen P. Application of nanoparticles in waste water treatment 1; 2008.
Dreaden EC, et al. The golden age: Gold nanoparticles for biomedicine. Chem Soc. Rev. 2012; 41(7):2740-79. https://doi.org/10.1039/C1CS15237H PMid:22109657 PMCid:PMC5876014
Salavati-Niasari M, Davar F, Mir N. Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron. 2008; 27(17):3514-18. https://doi.org/10.1016/j.poly.2008.08.020
Tai CY, et al. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind Eng Chem Res. 2007; 46 (17):5536-41. https://doi.org/10.1021/ie060869b
Sigmund W, et al. Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc. 2006; 89(2):395-407. https://doi.org/10.1111/ j.1551-2916.2005.00807.x
Chandrasekaran R, Gnanasekar S, Seetharaman P, Kappenman R, Arockiaswamy W, Sivaperumal S. Formulation of Carica papayalatex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J Mol Liq. 2016; 219;232-8. https://doi.org/10.1016/j.molliq.2016.03.038
Dhandapani P, Siddarth AS, Kamalasekaran S, Maruthamuthu S, Rajagopal G. Bio-approach: Ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties, carbohydrate. Polymer. 2014; 103:448-55. https://doi.org/10.1016/j.carbpol.2013.12.074 PMid:24528753
Abdul H, Sivaraj R, Venkatesh R. Green synthesis and characterizationof zinc oxide nanoparticles from Osmium Basilica L. var purpurascens Benth-Liliaceae leaf extract, Mater. Lett. 2014; 131:16-8. https://doi.org/10.1016/j.matlet.2014.05.033
Jayaseelan C, Rahman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bhagavan A, et al., Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophilia and their activity againstpathogenic bacteria and fungi, Spectro him. Acta A Mol Biomol Spectroscope. 2012; 90:78-84. https://doi.org/10.1016/j.saa.2012.01.006 PMid:22321514
Bird SM, El-Zubair O, Rawlings AE, Leggett GJ, Staniland SS. Anovel design strategy for nanoparticles on nanopatterns: Interferometriclithographic patterning of Mms6 bio templated magnetic nanoparticles, J Mater Chem C. 2015. https://doi.org/10.1039/C5TC03895B PMid:27358738 PMCid:PMC4894075
Nagarajan S, Kuppusamy AK. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J Nanobiotechnology. 2013; 11:39. doi:10.1186/1477-3155-11-39. https:// doi.org/10.1186/1477-3155-11-39 PMid:24298944 PMCid:PMC3879036
Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014; 116:275-7. https://doi.org/10.1016/j.matlet.2013.11.038
Pati R, Mehta RK, Mohanty S, Goswami C, Sonawane A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages, Nanomedicine Nanotechnology. Biol Med. 2014; 10:1195-208. https://doi.org/10.1016/j.nano.2014.02.012 PMid:24607937
Chandrasekaran R, Gnanasekar S, Seetharaman P, Kappenman R, Arockiaswamy W, Sivaperumal S. Formulation of Carica papaya latex-functionalized silver nano particles for its improved antibacterial and anticancer applications. J Mol Liq. 2016; 219:232-8. https://doi.org/10.1016/j.molliq.2016.03.038
Singh BN, Rawat AKS, Khan W, Naqvi AH, Singh BR. Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa Rhamnolipids. PLoS ONE. 2014; 9. https://doi.org/10.1371/journal.pone.0106937 PMid:25187953 PMCid:PMC4154833
Prasad K, Jha AK. ZnO nanoparticles: Synthesis and adsorption study. Nat Sci. 2009; 1:129-35. https://doi.org/10.4236/ns.2009.12016
Rao MD, Gautam P. Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtian: A green approach. Environ Prog Sustain Energy. 2016;17.
Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014l 116:275-7. https://doi.org/10.1016/j.matlet.2013.11.038
Pavani KV, Sunil Kumar N, Sangameswaran BB. Synthesis of lead nanoparticles by Aspergillus species. Polish J Microbial. 2012; 61:61-3. https://doi.org/10.33073/pjm-2012-008
Raliya R, Tarafdar JC. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonal L.). Agric Res. 2013; 2:48-57. https://doi.org/10.1007/s40003-012-0049-z
Ambika S, Sundararajan M. Green biosynthesis of ZnO nanoparticles using Vitex negundo L. extract: Spectroscopic investigation of interaction between ZnO nanoparticles and human serum albumin. J Photochemical Photobiol B Biol. 2015; 149:143-8. https://doi.org/10.1016/j.jphotobiol.2015.05.004 PMid:26065816
Bhuyan T, Mishra K, Khanuja M, Ram Prasad, Varma A. Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing. 2015; 32:55-61. https://doi.org/10.1016/j.mssp.2014.12.053
Gnana Sangeetha D, Thambavani DS. Biogenic production of zinc oxide nanoparticle using Acalypha indica. J Chem Biol Phys Sci. 2013; 4(1):238-46.
Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014; 116:275-7. https://doi.org/10.1016/j.matlet.2013.11.038
Ajiboye BO, Oloyede HOB, Salawu MO. Antihyperglycemic and anti-dyslipidemia activity of Musa paradisiacabased diet in alloxan-induced diabetic rats. Food Sci Nutra. 2018; 6(1):137-45. https://doi.org/10.1002/fsn3.538 PMid:29387371 PMCid:PMC5778235
Pereira A, Maraschino M. Banana from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. J Ethnopharmacology. 2015; 160:149-63. https://doi.org/10.1016/j.jep.2014.11.008 PMid:25449450
Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A. Biosynthesisof zinc oxide nanoparticles from Azadirachta indica for antibacterialand photocatalytic applications. Mater Sci Semi Cond Process. 2015; 32:5561. https://doi.org/10.1016/j.mssp.2014.12.053
Krupa AND, Vimala R. Evaluation of Tetra Ethoxy Silane (TEOS) sol-gelcoatings, modified with green synthesized zinc oxide nanoparticles for combating microfouling. Mater Sci Eng C. 2016; 61:728-35. https://doi.org/10.1016/j.msec.2016.01.013 PMid:26838903
Aladpoosh R, Montaner M. The role of cellulosic chains of cotton inbiosynthesis of ZnO nanorods producing multifunctional properties: Mechanism, characterizations and features, carbohydrate. Polymer. 2015; 126:122-9. https://doi.org/10.1016/j.carbpol.2015.03.036 PMid:25933530
Ali K, Dwivedi S, Azam A, Saquib Q, Al-said MS, Alkhedhairy AA, et al. Aloe vera extract functionalized zinc oxide nanoparticles asnano antibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci. 2016; 472:145-56, https://doi.org/10.1016/j.jcis.2016.03.021 PMid:27031596
Kavithaa K, Paulpandi M, Ponraj T, Murugan K, Sumathi S. Induction of intrinsic apoptotic pathway in human breast cancer (MCF-7) cellsthrough facile biosynthesized zinc oxide nanorods. Karbala Int J Mod Sci. 2016; 2:46-55. https://doi.org/10.1016/j.kijoms.2016.01.002
Ochieng PE, Iwuoha E, Michira I, Masikini M, Ondiek J, Githira P, et al. Green route synthesis and characterization of ZnO nanoparticlesusing Spathose campanulate. Int J Biochem Phys. 2015; 23:53.
Annan MA, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N. Anisochilus carnosus leaf extract mediated synthesis ofzinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater Sci Semi Cond Process. 2015; 39:621-8. https://doi.org/10.1016/j.mssp.2015.06.005
Kumar Y, Suresh J, Nathanael AJ, Sundararajan M, Hong SI. Novel green synthetic strategy to prepare ZnO nano crystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C. 2014; 41:17-27. https://doi.org/10.1016/j.msec.2014.04.025 PMid:24907732