Linear Stability Analysis in Ethylene Glycol-Copper Nanoliquid Saturated Porous Medium in the Presence of Different Shaped Nanoparticles

Jump To References Section

Authors

  • Department of Mathematics, M. S. Ramaiah Institute of Technology, M S Ramaiah Nagar, MSRIT Post, Bangalore - 560054 ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, M S Ramaiah Nagar, MSRIT Post, Bangalore - 560054 ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, M S Ramaiah Nagar, MSRIT Post, Bangalore - 560054 ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, M S Ramaiah Nagar, MSRIT Post, Bangalore - 560054 ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35816

Keywords:

Ethylene Glycol-Copper Nanoliquid, Linear Stability Analysis, Rayleigh-Bénard Convection, Single-Phase Model

Abstract

In the present paper we carried out linear stability analysis for ethylene glycol-copper nanoliquid-saturated porous medium. The thermal properties of baseliquid, nanoparticles and porous medium are used in the calculation of properties of nanoliquid and nanoliquid saturated porous medium using phenomenological laws and mixture theory. The rigid-free isothermal boundaries are considered in the study. Analytical expression for critical Rayleigh number is presented in the paper. Dissimilar shapes of nanoparticles are examined and their effect on the onset of convection is studied in great detail. In addition the effect of various parameters namely porous parameter, aspect ratio, volume fraction are also studied and analysed graphically. It is observed that the onset of convection is advanced when nanoparticles are added to baseliquid whereas delayed in the addition of the porous medium to the nanoliquid. Unicellular convection is possible only when the aspect ratio lies in the range 0.8 < A < 2 .

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

B. N. Veena, N. Srikantha, S. Sushma, & M. Uma. (2023). Linear Stability Analysis in Ethylene Glycol-Copper Nanoliquid Saturated Porous Medium in the Presence of Different Shaped Nanoparticles. Journal of Mines, Metals and Fuels, 71(10), 1511–1517. https://doi.org/10.18311/jmmf/2023/35816

 

References

Minkowycz WJ, Sparrow EM, Abraham JP. Nanoparticle heat transfer and fluid flow. CRC press; London, New York, 2012 Dec 4.

Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: A review of the diverse applications of nanofluids. Journal of Applied Physics. 2013 Jan 7; 113(1). DOI: https://doi.org/10.1063/1.4754271

Bianco V, Manca O, Nardini S, Vafai K. Heat transfer enhancement with nanofluids. CRC press; London, Newyork, 2015 Apr 1. DOI: https://doi.org/10.1201/b18324

Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab. (ANL), Argonne, IL (United States); 1995 Oct 1.

Masuda H, Ebata A, Teramae K, and Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of of Al 2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei 1993; 227(7) DOI: https://doi.org/10.2963/jjtp.7.227

Eastman JA, Choi SU, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters. 2001 Feb 5; 78(6):718-20. DOI: https://doi.org/10.1063/1.1341218

Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer. 2003 Aug 1; 125(4):567-74. DOI: https://doi.org/10.1115/1.1571080

Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International Journal of Heat and Mass Transfer. 2003 Sep 1; 46(19):3639-53. DOI: https://doi.org/10.1016/S0017-9310(03)00156-X

Buongiorno J. Convective transport in nanofluids. Journal of Heat Transfer 2006; 240(128)-250 DOI: https://doi.org/10.1115/1.2150834

Siddheshwar PG, Kanchana C, Kakimoto Y, Nakayama A. Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: theoretical answer to the phenomenon of enhanced heat transfer. Journal of Heat Transfer. 2017 Jan 1; 139(1):012402. DOI: https://doi.org/10.1115/1.4034484

Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer. 2007 May 1; 50(9-10):2002-18. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034

Tzou DY. Thermal instability of nanofluids in natural convection. International Journal of Heat and Mass Transfer. 2008 Jun 1; 51(11-12):2967-79. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.014

Nield DA, Kuznetsov AV. Thermal instability in a porous medium layer saturated by a nanofluid. International Journal of Heat and Mass Transfer. 2009 Dec 1; 52(25- 26):5796-801. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.023

Bourantas GC, Skouras ED, Loukopoulos VC, Burganos VN. Heat transfer and natural convection of nanofluids in porous media. European Journal of Mechanics-B/ Fluids. 2014 Jan 1; 43:45-56. DOI: https://doi.org/10.1016/j.euromechflu.2013.06.013

Kasaeian A, Daneshazarian R, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. International Journal of Heat and Mass Transfer. 2017 Apr 1; 107:778-91. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074

Nnanna AA. Experimental model of temperature-driven nanofluid. Journal of Heat Transfer. 2007; 129(6):697- 704. DOI: https://doi.org/10.1115/1.2717239

Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Heat and Fluid Flow. 2008 Oct 1; 29(5):1326-36. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009

Oztop HF, Dagtekin I. Mixed convection in twosided lid-driven differentially heated square cavity. International Journal of Heat and mass transfer. 2004 Apr 1; 47(8-9):1761-9. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.016

Sheremet MA, Pop I, Nazar RJ. Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal nonequilibrium model with a Tiwari and Das nanofluid model. 2015; 100:312- 21. DOI: https://doi.org/10.1016/j.ijmecsci.2015.07.007

Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. European Journal of Mechanics-B/Fluids. 2010 Nov 1; 29(6):472-82. DOI: https://doi.org/10.1016/j.euromechflu.2010.06.008

Siddheshwar PG, Veena BN. Study of Brinkman–Bènard nanofluid convection with idealistic and realistic boundary conditions and by considering the effects of shape of nanoparticles. Heat Transfer. 2021 Jun; 50(4):3948-76. DOI: https://doi.org/10.1002/htj.22059

Siddheshwar PG, Veena BN. A theoretical study of natural convection of water-based nanoliquids in lowporosity enclosures using single-phase model. Journal of Nanofluids. 2018 Feb 1; 7(1):163-74. DOI: https://doi.org/10.1166/jon.2018.1418

Nield DA, Bejan A. Convection in porous media. New York: springer; 2006 Feb 23.

Brinkman HC. The viscosity of concentrated suspensions and solutions. The Journal of Chemical Physics. 1952 Apr; 20(4):571 DOI: https://doi.org/10.1063/1.1700493

Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals. 1962 Aug; 1(3):187-91. DOI: https://doi.org/10.1021/i160003a005

Chandrasekhar S, Reid WH. On the expansion of functions which satisfy four boundary conditions. Proceedings of the National Academy of Sciences. 1957 Jun 15; 43(6):521-527. DOI: https://doi.org/10.1073/pnas.43.6.521

Nagata M. Bifurcations at the Eckhaus points in twodimensional Rayleigh-Bénard convection. Physical Review E. 1995 Dec 1; 52(6):6141. DOI: https://doi.org/10.1103/PhysRevE.52.6141

Chandrasekhar S. Hydrodynamic and hydromagnetic stability. Courier Corporation; 2013 Apr 26.

Siddheshwar PG, Meenakshi N. Amplitude equation and heat transport for Rayleigh–Bénard convection in Newtonian liquids with nanoparticles. International Journal of Applied and Computational Mathematics. 2017 Mar; 3:271-92. DOI: https://doi.org/10.1007/s40819-015-0106-y

Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. Journal of Applied Physics. 2009 Jul 1;106(1). DOI: https://doi.org/10.1063/1.3155999