Analysis of Transient Thermal Behaviour of a Different Profiled Fully Wetted Longitudinal Porous Fin with Internal Heat Generation

Jump To References Section

Authors

  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bengaluru - 560054, Karnataka ,IN
  • Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta, Shivamogga - 577451, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bengaluru – 560054, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35817

Keywords:

Finite Difference Method, Internal Heat Generation, Longitudinal Fin

Abstract

The transient thermal performance of a fully wetted longitudinal permeable fin under natural convection, radiation, and internal heat generation has been studied in the present problem. Due to variation of fin thickness with respect to fin length, it is possible to obtain different fin profiles such as triangular, convex and rectangular profiles. Here, the diverse profiles of the fin have been considered for the examination and Darcy’s model was implemented to investigate the porous nature of the fin. The governed partial differential equation has been solved by applying finite difference method. The influence of dimensionless parameters on the transient thermal profile as well as the heat dissipation rate of the three types of fins, has been graphically illustrated and interpreted physically.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-20

How to Cite

G. Sowmya, B. J. Gireesha, & Pasha, B. A. (2023). Analysis of Transient Thermal Behaviour of a Different Profiled Fully Wetted Longitudinal Porous Fin with Internal Heat Generation. Journal of Mines, Metals and Fuels, 71(10), 1570–1578. https://doi.org/10.18311/jmmf/2023/35817

 

References

Kiwan S, Al-Nimr MA. Using porous fins for heat transfer enhancement. Journal of Heat Transfer. 2001; 123(4):790-795. DOI: https://doi.org/10.1115/1.1371922

Kiwan S. Thermal analysis of natural convection porous fins. Transport in Porous Media. 2007; 67(1):17-29. DOI: https://doi.org/10.1007/s11242-006-0010-3

Bouaziz MN, Aziz A. Simple and accurate solution for convective–radiative fin with temperature dependent thermal conductivity using double optimal linearization. Energy Conversion and Management. 2010; 51(12):2776-2782. DOI: https://doi.org/10.1016/j.enconman.2010.05.033

Gorla RS, Bakier AY. Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer. 2011; 38(5):638-645. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.12.024

Torabi M, Yaghoobi H. Series solution for convectiveradiative porous fin using differential transformation method. Journal of Porous Media. 2013; 16(4): 341-349. DOI: https://doi.org/10.1615/JPorMedia.v16.i4.60

Hatami M, Ahangar GR, Ganji DD, Boubaker K. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Conversion and Management. 2014; 84:533-540. DOI: https://doi.org/10.1016/j.enconman.2014.05.007

Turkyilmazoglu M. Efficiency of heat and mass transfer in fully wet porous fins: exponential fins versus straight fins. International journal of refrigeration. 2014; 46:158- 164. DOI: https://doi.org/10.1016/j.ijrefrig.2014.04.011

Darvishi MT, Gorla RS, Khani F, Gireesha BJ. Thermal analysis of natural convection and radiation in a fully wet porous fin. International Journal of Numerical Methods for Heat & Fluid Flow. 2016; 26(8):2419-2431. DOI: https://doi.org/10.1108/HFF-06-2015-0230

Gireesha BJ, Sowmya G, Macha M. Temperature distribution analysis in a fully wet moving radial porous fin by finite element method. International Journal of Numerical Methods for Heat & Fluid Flow. 2019; 32(2):453-468. DOI: https://doi.org/10.1108/HFF-12-2018-0744

Hatami M, Hasanpour A, Ganji DD. Heat transfer study through porous fins (Si3N4 and AL) with temperaturedependent heat generation. Energy Conversion and Management. 2013; 74:9-16. DOI: https://doi.org/10.1016/j.enconman.2013.04.034

Dogonchi AS, Ganji DD. Convection–radiation heat transfer study of moving fin with temperature-dependent thermal conductivity, heat transfer coefficient and heat generation. Applied Thermal Engineering. 2016; 103:705-712. DOI: https://doi.org/10.1016/j.applthermaleng.2016.04.121

Turkyilmazoglu M. Heat transfer from moving exponential fins exposed to heat generation. International Journal of Heat and Mass Transfer. 2018; 116:346-351. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.091

Alkasassbeh M, Omar Z, Mebarek‐Oudina F, Raza J, Chamkha A. Heat transfer study of convective fin with temperature‐dependent internal heat generation by hybrid block method. Heat Transfer—Asian Research. 2019; 48(4):1225-1244. DOI: https://doi.org/10.1002/htj.21428

Das R, Kundu B. Simultaneous estimation of heat generation and magnetic field in a radial porous fin from surface temperature information. International Communications in Heat and Mass Transfer. 2021; 127:105497. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105497

Varun Kumar R, Sowmya G, Jagadeesha KC, Prasannakumara BC, Shehzad SA. Inspection of thermal distribution through a porous fin of triangular profile with internal heat generation and electromagnetic field. Waves in Random and Complex Media. 2022 Oct:1-21. DOI: https://doi.org/10.1080/17455030.2022.2131935

Torabi M, Aziz A, Zhang K. A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities. Energy. 2013; 51:243-256. DOI: https://doi.org/10.1016/j.energy.2012.11.052

Hatami M, Ganji DD. Thermal performance of circular convective–radiative porous fins with different section shapes and materials. Energy Conversion and Management. 2013; 76:185-193. DOI: https://doi.org/10.1016/j.enconman.2013.07.040

Hatami M, Ganji DD. Thermal behavior of longitudinal convective–radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). Ceramics International. 2014; 40(5):6765-6775. DOI: https://doi.org/10.1016/j.ceramint.2013.11.140

Mosayebidorcheh S, Hatami M, Mosayebidorcheh T, Ganji DD. Optimization analysis of convective–radiative longitudinal fins with temperature-dependent properties and different section shapes and materials. Energy Conversion and Management. 2015; 106:1286-1294. DOI: https://doi.org/10.1016/j.enconman.2015.10.067

Darvishi MT, Gorla RS, Khani F. Unsteady thermal response of a porous fin under the influence of natural convection and radiation. Heat and Mass Transfer. 2014; 50(9):1311-1317. DOI: https://doi.org/10.1007/s00231-014-1341-1

Mosayebidorcheh S, Farzinpoor M, Ganji DD. Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles. Energy Conversion and Management. 2014; 86:365-370. DOI: https://doi.org/10.1016/j.enconman.2014.05.033

Sowmya G, Gireesha BJ, Berrehal H. An unsteady thermal investigation of a wetted longitudinal porous fin of different profiles. Journal of Thermal Analysis and Calorimetry. 2021; 143(3):2463-2474. DOI: https://doi.org/10.1007/s10973-020-09963-7

Varun Kumar RS, Saleh B, Sowmya G, Afzal A, Prasannakumara BC, Punith Gowda RJ. Exploration of transient heat transfer through a moving plate with exponentially temperature-dependent thermal properties. Waves in Random and Complex Media. 2022 Mar:1-9. DOI: https://doi.org/10.1080/17455030.2022.2056256