Selective Laser Melting of AlSi10Mg: Corrosion Behavior
DOI:
https://doi.org/10.18311/jmmf/2024/36429Keywords:
Additive Manufacturing, AlSi10Mg Alloy, Corrosion, Selective Laser MeltingAbstract
Additive Manufacturing (AM) processes can theoretically fabricate materials with any complex structures with added functionality at low costs. However, the properties of components developed by AM should not lose to the properties observed in components fabricated through conventional manufacturing methods. In this study, the corrosion resistance of AlSi10Mg alloy processed through Selective Laser Melting (SLM) in contrast to its tra-ditional counterpart, Sand-Casting (SC) was investigated. Potentiodynamic polarization tests were performed to study the electrochemical behaviour in a 3.5% NaCl solution. It was observed that the corrosion resistance of the SLM material is relatively better than the SC alloy under similar test conditions. It may be concluded that the unique solidification conditions existing during the SLM process may lead to marginally improved corrosion resistance in the alloy considered.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-03-25
Published 2024-04-22
References
Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater Today. 2018; 21(1):22-37. https://doi.org/10.1016/j.mattod.2017.07.001 DOI: https://doi.org/10.1016/j.mattod.2017.07.001
Prashanth K, Löber L, Klauss H-J, Kühn U, Eckert J. Characterization of 316L steel cellular dodecahedron structures produced by selective laser melting. Technologies. 2016; 4(4). https://doi.org/10.3390/ technologies4040034 DOI: https://doi.org/10.3390/technologies4040034
Ma P, Ji P, Jia Y, Shi X, Yu Z, Prashanth K.G. Effect of substrate plate heating on the microstructure and properties of selective laser melted Al-20Si-5Fe- 3Cu-1Mg alloy. Materials. 2021; 14(2). https://doi. org/10.3390/ma14020330 DOI: https://doi.org/10.3390/ma14020330
Ma P, Jia Y, Prashanth K.G, Scudino S, Yu Z, Eckert J. Microstructure and phase formation in Al-20Si-5Fe- 3Cu-1Mg synthesized by selective laser melting. J Alloys Compd. 2016; 657:430-5. https://doi.org/10.1016/j. jallcom.2015.10.119 DOI: https://doi.org/10.1016/j.jallcom.2015.10.119
Ma P, Prashanth K, Scudino S, Jia Y, Wang H, Zou C, et al. Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting. Metals. 2014; 4(1):28-36. https://doi.org/10.3390/met4010028 DOI: https://doi.org/10.3390/met4010028
Ma P, Fan Y, Wei S, Zhang Z, Yang H, Wan S, et al. Microstructure and mechanical properties of AlCoCrFeMnNi HEAs fabricated by selective laser melting. J Mater Res Technol. 2023; 25:7090-100. https:// doi.org/10.1016/j.jmrt.2023.07.124 DOI: https://doi.org/10.1016/j.jmrt.2023.07.124
Jia YD, Zhang LB, Ma P, Scudino S, Wang G, Yi J, et al. Thermal expansion behavior of Al–XSi alloys fabricated using selective laser melting. Prog Addit Manuf. 2020; 5(3):247-57. https://link.springer.com/article/10.1007/ s40964-020-00130-w DOI: https://doi.org/10.1007/s40964-020-00130-w
Wang Z, Xie M, Li Y, Zhang W, Yang C, Kollo L, et al. Premature failure of an additively manufactured material. NPG Asia Materials. 2020; 30. https://doi. org/10.1038/s41427-020-0212-0 DOI: https://doi.org/10.1038/s41427-020-0212-0
Wang Z, Tang SY, Scudino S, Ivanov YP, Qu RT, Wang D, et al. Additive manufacturing of a martensitic Co–Cr–Mo alloy: Towards circumventing the strength– ductility trade-off. Addit Manuf. 2021; 37. https://doi. org/10.1016/j.addma.2020.101725 DOI: https://doi.org/10.1016/j.addma.2020.101725
Zhou X, Li K, Zhang D, Liu X, Ma J, Liu W, et al. Textures formed in a CoCrMo alloy by selective laser melting. J Alloys Compd. 2015; 631:153-64. https://doi. org/10.1016/j.jallcom.2015.01.096 DOI: https://doi.org/10.1016/j.jallcom.2015.01.096
Prashanth KG, Shahabi HS, Attar H, Srivastava VC, Ellendt N, Uhlenwinkel V, et al. Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Addit Manuf. 2015; 6:1–5. https://doi.org/10.1016/j. addma.2015.01.001 DOI: https://doi.org/10.1016/j.addma.2015.01.001
Lai Z, Guo T, Zhang S, Kollo L, Attar H, Wang Z, et al. Selective laser melting of commercially pure silicon. J Wuhan Univ Technol Mater Sci Ed. 2022; 37:1155-65. https://doi.org/10.1007/s11595-022-2647-3 DOI: https://doi.org/10.1007/s11595-022-2647-3
Scudino S, Unterdörfer C, Prashanth KG, Attar H, Ellendt N, Uhlenwinkel V, et al. additive manufacturing of Cu-10Sn bronze. Mater Lett. 2015; 156:202-4. https:// doi.org/10.1016/j.matlet.2015.05.076 DOI: https://doi.org/10.1016/j.matlet.2015.05.076
Attar H, Prashanth KG, Chaubey AK, Calin M, Zhang LC, Scudino S, et al. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes. Mater Lett. 2015; 142:38- 41. https://doi.org/10.1016/j.matlet.2014.11.156 DOI: https://doi.org/10.1016/j.matlet.2014.11.156
Attar H, Prashanth KG, Zhang LC, Calin M, Okulov IV, Scudino S, et al. Effect of powder particle shape on the properties of in situ Ti-TiB composite materials produced by selective laser melting. J Mater Sci Technol. 2015; 31(10): 1001–1005. https://doi.org/10.1016/j. jmst.2015.08.007 DOI: https://doi.org/10.1016/j.jmst.2015.08.007
Singh S, Palani IA, Dehgahi S, Paul CP, Prashanth KG, Qureshi AJ. Influence of the interlayer temperature on structure and properties of CMT wire arc additive manufactured NiTi structures. J Alloys Compd. 2023; 966. https://doi.org/10.1016/j.jallcom.2023.171447 DOI: https://doi.org/10.1016/j.jallcom.2023.171447
Singh S, Palani IA, Paul CP, Funk A, Prashanth KG. Wire arc additive manufacturing of NiTi 4D structures: Influence of interlayer delay. 3D Print Addit Manuf. 2022; 11(1):152-62. https://doi.org/10.1089/3dp.2021.0296 DOI: https://doi.org/10.1089/3dp.2021.0296
Singh N, Hameed P, Ummethala R, Manivasagam G, Prashanth KG, Eckert J. Selective laser manufacturing of Ti-based alloys and composites: Impact of process parameters. Application Trends, and Future Prospects. Mater Today Adv. 2020; 8:100097. https://doi. org/10.1016/j.mtadv.2020.100097 DOI: https://doi.org/10.1016/j.mtadv.2020.100097
Singh N, Edachery V, Rajput M, Chatterjee K, Kailas SV, Prashanth KG. Ti6Al7Nb–TiB nanocomposites for ortho-implant applications. J Mater Res. 2022; 37:2525- 2535. https://doi.org/10.1557/s43578-022-00578-2 DOI: https://doi.org/10.1557/s43578-022-00578-2
Sokkalingam R, Sivaprasad K, Singh N, Muthupandi V, Ma P, Jia YD, et al. Subtle Change in the work hardening behavior of fcc materials processed by selective laser melting. Prog Addit Manuf. 2022; 7:453-61. https://doi. org/10.1007/s40964-022-00301-x DOI: https://doi.org/10.1007/s40964-022-00301-x
Maurya HS, Kollo L, Tarraste M, Juhani K, Sergejev F, Prashanth KG. Selective laser melting of TiC-Fe via Laser pulse shaping: Microstructure and mechanical properties. 3D Print Addit Manuf. 2021; 10(4):640-9. https://doi.org/10.1089/3dp.2021.0221 DOI: https://doi.org/10.1089/3dp.2021.0221
Ummethala R, Jayaraj J, Karamched PS, Rathinavelu S, Singh N, Surreddi KB, et al. In vitro corrosion behavior of selective laser melted Ti-35Nb-7Zr-5Ta. J Mater Eng Perform. 2021; 30:7967-78. https://doi.org/10.1007/ s11665-021-05940-9 DOI: https://doi.org/10.1007/s11665-021-05940-9
Hameed P, Liu CF, Ummethala R, Singh N, Huang HH, Manivasagam G, et al. Biomorphic porous Ti6Al4V gyroid scaffolds for bone implant applications fabricated by selective laser melting. Prog Addit Manuf. 2021; 6:455-69. https://doi.org/10.1007/s40964-021-00210-5 DOI: https://doi.org/10.1007/s40964-021-00210-5
Singh S, Jinoop AN, Palani IA, Paul CP, Tomar KP, Prashanth KG. Microstructure and mechanical properties of NiTi-SS bimetallic structures built using wire arc additive manufacturing. Mater Lett. 2021; 303. https://doi.org/10.1016/j.matlet.2021.130499 DOI: https://doi.org/10.1016/j.matlet.2021.130499
Ummethala R, Karamched PS, Rathinavelu S, Singh N, Aggarwal A, Sun K, et al. Selective laser melting of high-strength, low-modulus Ti–35Nb–7Zr–5Ta alloy. Materialia. 2020; 14. https://doi.org/10.1016/j. mtla.2020.100941 DOI: https://doi.org/10.1016/j.mtla.2020.100941
Jung HY, Choi SJ, Prashanth KG, Stoica M, Scudino S, Yi S, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study. Mater Des. 2015; 86:703-8. https://doi.org/10.1016/j. matdes.2015.07.145 DOI: https://doi.org/10.1016/j.matdes.2015.07.145
Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, et al. Processing metallic glasses by selective laser melting. Mater Today. 2013; 16(1-2): 37-41. https://doi. org/10.1016/j.mattod.2013.01.018 DOI: https://doi.org/10.1016/j.mattod.2013.01.018
Prashanth KG, Scudino S. Quasicrystalline composites by additive manufacturing. Key Eng Mater. 2019; 818:72-6. https://doi.org/10.4028/www.scientific.net/ KEM.818.72 DOI: https://doi.org/10.4028/www.scientific.net/KEM.818.72
Karimi J, Kollo L, Prashanth KG. Characterization of gasatomized equiatomic AlCoCrFeNi powder for additive manufacturing. Metall Mater Trans A. 2023; 54:3417-24. https://doi.org/10.1007/s11661-023-07129-2 DOI: https://doi.org/10.1007/s11661-023-07129-2
Karimi J, Antonov M, Prashanth KG. Effect of wear debris entrapment on the tribological performance of AlCoCrFeNi produced by selective laser melting or spark plasma sintering. Metall Mater Trans A. 2022; 53:4004- 10. https://doi.org/10.1007/s11661-022-06805-z DOI: https://doi.org/10.1007/s11661-022-06805-z
Karimi J, Suryanarayana C, Okulov I, Prashanth KG. Selective laser melting of Ti6Al4V: Effect of laser re-melting. Mater Sci Eng A. 2021; 805. https://doi. org/10.1016/j.msea.2020.140558 DOI: https://doi.org/10.1016/j.msea.2020.140558
Prashanth KG. Processing of Al-based composite material by selective laser melting: A perspective. Mater Today Proc. 2022; 57(2):498-504. https://doi. org/10.1016/j.matpr.2022.01.391 DOI: https://doi.org/10.1016/j.matpr.2022.01.391
Xi L, Gu D, Guo S, Wang R, Ding K, Prashanth KG. Grain refinement in laser manufactured Al-based composites with TiB2 ceramic. J Mater Res Technol. 2020; 9(3):2611- 22. https://doi.org/10.1016/j.jmrt.2020.04.059. DOI: https://doi.org/10.1016/j.jmrt.2020.04.059
Wang P, Eckert J, Prashanth KG, Wu M-w, Kaban I, Xi L, et al. A review of particulate-reinforced aluminum matrix composites fabricated by selective laser melting. Trans Nonferrous Met Soc China. 2020; 30(8):2001-34. https://doi.org/10.1016/S1003-6326(20)65357-2 DOI: https://doi.org/10.1016/S1003-6326(20)65357-2
Xi L, Feng L, Gu D, Wang R, Sarac B, Prashanth KG, et al. ZrC+TiC synergically reinforced metal matrix composites with micro/nanoscale reinforcements prepared by laser powder bed fusion. J Mater Res Technol. 2022; 19:4645-57. https://doi.org/10.1016/j. jmrt.2022.06.149 DOI: https://doi.org/10.1016/j.jmrt.2022.06.149
Xi L, Xu J, Gu D, Feng L, Lu Q, Prashanth KG. A novel crack-free and refined 2195-Ti/CeB6 composites prepared by laser powder bed fusion. Mater Lett. 2023; 333. https://doi.org/10.1016/j.matlet.2022.133572 DOI: https://doi.org/10.1016/j.matlet.2022.133572
Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, et al. Review of selective laser melting: Materials and applications. Appl Phys Rev. 2015; 2(4). https://doi. org/10.1063/1.4935926 DOI: https://doi.org/10.1063/1.4935926
Yu WH, Sing SL, Chua CK, Kuo CN, Tian XL. Particlereinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. Prog Mater Sci. 2019; 104:330-79. https://doi.org/10.1016/j. pmatsci.2019.04.006 DOI: https://doi.org/10.1016/j.pmatsci.2019.04.006
Aboulkhair NT, Simonelli M, Parry L, Ashcroft I, Tuck C, Hague R. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting. Prog Mater Sci. 2019; 106. https://doi. org/10.1016/j.pmatsci.2019.100578 DOI: https://doi.org/10.1016/j.pmatsci.2019.100578
Gharbi O, Jiang D, Feenstra DR, Kairy SK, Wu Y, Hutchinson CR, et al. On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting. Corros Sci. 2018; 143:93-106. https://doi.org/10.1016/j.corsci.2018.08.019 DOI: https://doi.org/10.1016/j.corsci.2018.08.019
Leon A, Shirizly A, Aghion E. Corrosion behavior of AlSi10Mg alloy produced by Additive Manufacturing (AM) vs. its counterpart gravity cast alloy. Metals. 2016; 6(7). https://doi.org/10.3390/met6070148 DOI: https://doi.org/10.3390/met6070148
Revilla RI, Liang J, Godet S, De Graeve I. Local corrosion behavior of additive manufactured AlSiMg alloy assessed by SEM and SKPFM. J Electrochem Soc. 2017; 164(2):C27-35. https://doi.org/10.1149/2.0461702jes DOI: https://doi.org/10.1149/2.0461702jes
Prashanth KG, Debalina B, Wang Z, Gostin PF, Gebert A, Calin M, Kühn U, et al. Tribological and corrosion properties of Al-12Si produced by selective laser melting. J Mater Res. 2014; 29:2044-54. https://doi.org/10.1557/ jmr.2014.133 DOI: https://doi.org/10.1557/jmr.2014.133
Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang Z, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A. 2014; 590: 153-60. https://doi.org/10.1016/j.msea.2013.10.023 DOI: https://doi.org/10.1016/j.msea.2013.10.023
Wang Z, Ummethala R, Singh N, Tang S, Suryanarayana C, Eckert J, et al. Selective laser melting of aluminum and its alloys. Materials. 2020; 13(20). https://doi. org/10.3390/ma13204564 DOI: https://doi.org/10.3390/ma13204564
Liao H, Wu Y, Zhou K, Yang J. Hot deformation behavior and processing map of Al–Si–Mg alloys containing different amount of silicon based on Gleebe-3500 hot compression simulation. Mater Des. 2015; 65:1091-9. https://doi.org/10.1016/j.matdes.2014.08.021 DOI: https://doi.org/10.1016/j.matdes.2014.08.021
Lin YC, Luo SC, Huang J, Yin LX, Jiang XY. Effects of solution treatment on microstructures and microhardness of a sr-modified Al-Si-Mg Alloy. Mater Sci Eng A. 2018; 725:530-40. https://doi.org/10.1016/j. msea.2018.04.049 DOI: https://doi.org/10.1016/j.msea.2018.04.049
Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater Des. 2015; 65:417-24. https://doi.org/10.1016/j. matdes.2014.09.044 DOI: https://doi.org/10.1016/j.matdes.2014.09.044
McDonald SD, Nogita K, Dahle AK. Eutectic nucleation in Al–Si alloys. Acta Mater. 2004; 52(14):4273-80. https://doi.org/10.1016/j.actamat.2004.05.043 DOI: https://doi.org/10.1016/j.actamat.2004.05.043
Jung JG, Lee SH, Lee JM, Cho YH, Kim SH, Yoon WH. Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment. Mater Sci Eng A. 2016; 669:187-95. https://doi.org/10.1016/j. msea.2016.05.087 DOI: https://doi.org/10.1016/j.msea.2016.05.087
Ravi KR, Manivannan S, Phanikumar G, Murty BS, Sundarraj S. Influence of Mg on grain refinement of near eutectic Al-Si alloys. Metall Mater Trans A. 2011; 42:2028-39. https://doi.org/10.1007/s11661-010-0600-0 DOI: https://doi.org/10.1007/s11661-010-0600-0
Prashanth KG, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys. J Alloys Compd. 2017; 707:27-34. https://doi.org/10.1016/j. jallcom.2016.12.209 DOI: https://doi.org/10.1016/j.jallcom.2016.12.209
Prashanth KG, Scudino S, Chaubey AK, Löber L, Wang P, et al. Processing of Al-12Si-TNM composites by selective laser melting and evaluation of compressive and wear properties. J Mater Res. 2016; 31:55-65. https:// doi.org/10.1557/jmr.2015.326 DOI: https://doi.org/10.1557/jmr.2015.326
Zhao C, Wang Z, Li D, Kollo L, Luo Z, Zhang W, et al. Cu-Ni-Sn alloy fabricated by melt spinning and selective laser melting: A comparative study on the microstructure and formation kinetics. J Mater Res Technol. 2020; 9(6):13097-105. https://doi.org/10.1016/j. jmrt.2020.09.047 DOI: https://doi.org/10.1016/j.jmrt.2020.09.047
Wu J, Wang XQ, Wang W, Attallah MM, Loretto MH. Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater. 2016; 117:311-20. https://doi. org/10.1016/j.actamat.2016.07.012 DOI: https://doi.org/10.1016/j.actamat.2016.07.012
Pezzato L, Dabalà M, Gross S, Brunelli K. Effect of microstructure and porosity of AlSi10Mg alloy produced by selective laser melting on the corrosion properties of plasma electrolytic oxidation coatings. Surf Coat Int. 2020; 404. https://doi.org/10.1016/j. surfcoat.2020.126477 DOI: https://doi.org/10.1016/j.surfcoat.2020.126477
Chen H, Zhang C, Jia D, Wellmann D, Liu W. Corrosion behaviors of selective laser melted aluminum alloys: A review. Metals. 2020; 10(1). https://doi.org/10.3390/ met10010102 DOI: https://doi.org/10.3390/met10010102
Cabrini M, Lorenzi S, Pastore T, Testa C, Manfredi D, Lorusso M, et al. Corrosion behavior of AlSi10Mg alloy produced by laser powder bed fusion under chloride exposure. Corros Sci. 2019; 152:101-8. https://doi. org/10.1016/j.corsci.2019.03.010 DOI: https://doi.org/10.1016/j.corsci.2019.03.010
Rafieazad M, Mohammadi M, Gerlich A, Nasiri A. Enhancing the corrosion properties of additively manufactured AlSi10Mg using friction stir processing. Corros Sci. 2021; 178. https://doi.org/10.1016/j. corsci.2020.109073 DOI: https://doi.org/10.1016/j.corsci.2020.109073
De Damborenea J, Conde A, Gardon M, Ravi GA, Arenas MA. Effect of growth orientation and heat treatment on the corrosion properties of AlSi10Mg alloy produced by additive manufacturing. J Mater Res Technol. 2022; 18: 5325-36. https://doi.org/10.1016/j.jmrt.2022.05.021 DOI: https://doi.org/10.1016/j.jmrt.2022.05.021
Zakay A, Aghion E. Effect of post-heat treatment on the corrosion behavior of AlSi10Mg alloy produced by additive manufacturing. The Journal of the Minerals, Metals and Materials Society. 2019; 71:1150-7. https:// doi.org/10.1007/s11837-018-3298-x DOI: https://doi.org/10.1007/s11837-018-3298-x
Kubacki GW, Brownhill JP, Kelly RG. Comparison of atmospheric corrosion of additively manufactured and cast Al-10Si-Mg over a range of heat treatments. Corrosion. 2019; 75(12):1527-40. https://doi. org/10.5006/3318 DOI: https://doi.org/10.5006/3318
Gu XH, Zhang JX, Fan XL, Zhang LC. Corrosion behavior of selective laser melted AlSi10Mg alloy in NaCl solution and its dependence on heat treatment. Acta Metall Sin. 2020; 33:327-37. https://doi.org/10.1007/ s40195-019-00903-5 DOI: https://doi.org/10.1007/s40195-019-00903-5
Örnek C. Additive manufacturing – a general corrosion perspective. Corros Eng Sci Technol. 2018; 53(7): 531-5. https://doi.org/10.1080/1478422X.2018.1511327 DOI: https://doi.org/10.1080/1478422X.2018.1511327
Song J, Chew Y, Jiao L, Yao X, Moon SK, Bi G. Numerical study of temperature and cooling rate in selective laser melting with functionally graded support structures. Additive manufacturing. 2018; 24:543-51. https://doi. org/10.1016/j.addma.2018.10.039 DOI: https://doi.org/10.1016/j.addma.2018.10.039
Wang P, Deng L, Prashanth KG, Pauly S, Eckert J, Scudino S. Microstructure and mechanical properties of Al-Cu alloys fabricated by selective laser melting of powder mixtures. J Alloys Compd. 2018; 735:2263-6. https://doi.org/10.1016/j.jallcom.2017.10.168 DOI: https://doi.org/10.1016/j.jallcom.2017.10.168
Gustmann T, Neves A, Kühn U, Gargarella P, Kiminami CS, Bolfarini C, et al. Influence of processing parameters on the fabrication of a Cu-Al-Ni-Mn shape-memory alloy by selective laser melting. Addit Manuf. 2016; 11:23-31. https://doi.org/10.1016/j.addma.2016.04.003 DOI: https://doi.org/10.1016/j.addma.2016.04.003
Prashanth KG, Damodaram R, Scudino S, Wang Z, Rao KP, Eckert J. Friction welding of Al-12Si parts produced by selective laser melting. Mater Des. 2014; 57:632-7. https://doi.org/10.1016/j.matdes.2014.01.026 DOI: https://doi.org/10.1016/j.matdes.2014.01.026
Prashanth K.G, Scudino S, Eckert J. Defining the tensile properties of Al-12Si parts produced by selective laser melting. Acta Mater. 2017; 126:25-35. https://doi. org/10.1016/j.actamat.2016.12.044 DOI: https://doi.org/10.1016/j.actamat.2016.12.044