Physicochemical Modifications on Fibre Reinforced Polymer Composites for Mining Applications
DOI:
https://doi.org/10.18311/jmmf/2023/36535Keywords:
Bio-Composites, Bio-Degradability, Corrosion Properties, Mining, Moisture Absorption, Physicochemical Modifications.Abstract
Polymer composites are mainly employed as an industrial material because of their chemical and corrosion resistance, especially in mining applications. As a result of the growing demand for biodegradable, ecological, and recyclable materials, organic fibres are widely used as reinforcement in polymer composites in recent years. The challenges arising from polymer composites, like environmental impact, moisture absorption, Thermomechanical property deterioration, lower durability in mining applications are discussed in this review. This work analyses the influence of certain physicochemical modifications on the reinforcement and matrix in polymer composites for mining purpose. This investigation was to understand the effectiveness of physicochemical modifications, specifically cryogenic treatment, on reinforcements and matrix to overcome the above mentioned challenges. This study also highlights the morphological and thermal changes due to the modifications. Results show the effect of these modifications on the composite and its constituents, cryogenic treatment on the organic fibre reinforcements showed increased moisture resistance, higher cellulose composition and mechanical properties, exposing the potential of using organic fibre-reinforced polymer composite in Mining applications.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Wang YQ, Zhang PF, Li JZ. The application of composite materials in coal mine production. Adv Mater Res. 2013; 756-759:49-53. https://doi.org/10.4028/www.scientific. net/AMR.756-759.49 DOI: https://doi.org/10.4028/www.scientific.net/AMR.756-759.49
Beetle Plastics. FRP Mining Solutions Solve Corrosion Problems; 2013. Available from: https://beetleplastics. com/frp-mining-solutions-solve-corrosion-problems/
La Mantia FP, Morreale M. Green composites: A brief review. Compos Part Appl Sci Manuf. 2011; 42(6):579- 88. https://doi.org/10.1016/j.compositesa.2011.01.017 DOI: https://doi.org/10.1016/j.compositesa.2011.01.017
Ilyas RA, Sapuan S, Norizan MN, Mahamud A, Mohd Roslim MH, Radzi AM, et al. Potential of natural fibre composites for transport industry: A review; 2019.
Thomas L, Ramachandra M. Advanced materials for wind turbine blade- A review. Mater Today Proc. 2018; 5(1, Part 3):2635-40. https://doi.org/10.1016/j. matpr.2018.01.043 DOI: https://doi.org/10.1016/j.matpr.2018.01.043
Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B Eng. 2011; 42(4):856-73. https://doi.org/10.1016/j.compositesb.2011.01.010 DOI: https://doi.org/10.1016/j.compositesb.2011.01.010
Kabir MM, Wang H, Lau K tak, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Compos Part B Eng. 2012; 43:2883-92. https://doi.org/10.1016/j.compositesb. 2012.04.053 DOI: https://doi.org/10.1016/j.compositesb.2012.04.053
Todkar SS, Patil SA. Review on mechanical properties evaluation of Pineapple Leaf Fibre (PALF) reinforced polymer composites. Compos Part B Eng. 2019; 174:106927. https://doi.org/10.1016/j.compositesb. 2019.106927 DOI: https://doi.org/10.1016/j.compositesb.2019.106927
Joshi SC, Dikshit V, Ali M. Fractography of particle strengthening mechanisms at interfaces in prepreg composites. Adv Mater Res. 2013; 816-817:196-200. https:// doi.org/10.4028/www.scientific.net/AMR.816-817.196 DOI: https://doi.org/10.4028/www.scientific.net/AMR.816-817.196
Manu M, Roy KER, Ali MM, Mathew AA. Experimental study on silane as an epoxy additive for improving the impact strength of CFRP composites at cryogenic temperatures. Mater Today Proc. 2022; 52:2279-84. https:// doi.org/10.1016/j.matpr.2021.08.319 DOI: https://doi.org/10.1016/j.matpr.2021.08.319
Prasad V, suresh D, Joseph MA, Sekar K, Ali M. Development of flax fibre reinforced epoxy composite with nano Tio2 addition into matrix to enhance mechanical properties. Mater Today Proc. 2018; 5(5, Part 2):11569-75. https://doi.org/10.1016/j. matpr.2018.02.125 DOI: https://doi.org/10.1016/j.matpr.2018.02.125
Bera M, Alagirusamy R, Das A. A study on interfacial properties of jute-PP composites. J Reinf Plast Compos. 2010; 29(20):3155-61. https://doi. org/10.1177/0731684410369723 DOI: https://doi.org/10.1177/0731684410369723
Mahesh, Rawat P, Singh KK, Singh PK. Comparison of steel and fiber-reinforced polymer rebars for mining applications: A numerical approach. Mater Today Proc. 2020; 33:5041-5. https://doi.org/10.1016/j. matpr.2020.02.840 DOI: https://doi.org/10.1016/j.matpr.2020.02.840
Kaiser PK, Cai M. Design of rock support system under rockburst condition. J Rock Mech Geotech Eng. 2012; 4(3):215-27. https://doi.org/10.3724/ SP.J.1235.2012.00215 DOI: https://doi.org/10.3724/SP.J.1235.2012.00215
Ayasrah M, Qiu H, Zhang X, Daddow M. Prediction of ground settlement induced by slurry shield tunnelling in granular soils. Civ Eng J. 2020; 6:2273-89. https://doi. org/10.28991/cej-2020-03091617 DOI: https://doi.org/10.28991/cej-2020-03091617
Ginouse N, Jolin M. Mechanisms of placement in sprayed concrete. Tunn Undergr Space Technol. 2016; 58:177-85. https://doi.org/10.1016/j.tust.2016.05.005 DOI: https://doi.org/10.1016/j.tust.2016.05.005
de Alencar Monteiro VM, de Andrade Silva F. On the design of the fiber reinforced shotcrete applied as primary rock support in the Cuiabá underground mining excavations: A case study. Case Stud Constr Mater. 2021; DOI: https://doi.org/10.1016/j.cscm.2021.e00784
:e00784. https://doi.org/10.1016/j.cscm.2021.e00784 18. Hashemi S, Al-Mahaidi R. Experimental and finite element analysis of flexural behavior of FRP-strengthened RC beams using cement-based adhesives. Constr Build Mater. 2012; 26(1):268-73. https://doi.org/10.1016/j. conbuildmat.2011.06.021 DOI: https://doi.org/10.1016/j.conbuildmat.2011.06.021
Vijay R, Aju Kumar VN, Sadiq A, Thomas L. Influence of cryogenic treatment on bulk and surface properties of aluminium alloys: A review. Adv Mater Process Technol. 2022; 0(0):1-12. DOI: https://doi.org/10.1080/2374068X.2022.2072085
Liston EM, Martinu L, Wertheimer MR. Plasma surface modification of polymers for improved adhesion: A critical review. J Adhes Sci Technol. 1993; 7(10):1091-127. https://doi.org/10.1163/156856193X00600 DOI: https://doi.org/10.1163/156856193X00600
Dilsiz N, Yavuz H, Çörekçi S, Çakmak M. Plasma surface functionalization of biaxially oriented polypropylene films with trimethyl borate. Adv Mater Phys Chem. 2011; 1(2):50-5. https://doi.org/10.4236/ampc.2011.12009 DOI: https://doi.org/10.4236/ampc.2011.12009
Abahazem A, Merbahi N, Guedah H, Yousfi M. Electric and spectroscopic studies of pulsed corona discharges in nitrogen at atmospheric pressure. J Anal Sci Methods Instrum. 2017; 7(3):57-74. https://doi.org/10.4236/ jasmi.2017.73006 DOI: https://doi.org/10.4236/jasmi.2017.73006
Gholshan Tafti HR, Valipour P, Mirjalili M. Effects of corona treatment on morphology and properties of carbon based fillers/epoxy nanocomposites. Polym Compos. 2018; 39(S4):E2298-304. https://doi. org/10.1002/pc.24622 DOI: https://doi.org/10.1002/pc.24622
Pego MFF, Bianchi ML, Carvalho JA, Veiga TRLA. Surface modification of activated carbon by corona treatment. An Acad Bras Cienc. 2019; 91(1):e20170947. https://doi. org/10.1590/0001-3765201920170947 PMid:30916149 DOI: https://doi.org/10.1590/0001-3765201920170947
Hassani FO, Merbahi N, Oushabi A, Elfadili MH, Kammouni A, Oueldna N. Effects of corona discharge treatment on surface and mechanical properties of Aloe Vera fibers. Mater Today Proc. 2019; 24. https://doi. org/10.1016/j.matpr.2019.07.527 DOI: https://doi.org/10.1016/j.matpr.2019.07.527
Lopes TA. Efeito da modificação superficial com descarga de corona em filmes de nanofibra de pinus e eucalipto. 2018; 80.
Louzi V, Campos J. Corona treatment applied to synthetic polymeric monofilaments. (PP, PET, and PA-6). Surf Interfaces. 2018; 14. https://doi.org/10.1016/j.surfin. 2018.12.005 DOI: https://doi.org/10.1016/j.surfin.2018.12.005
Luan X, Song Z, Xu W, Li Y, Ding C, Chen H. Spectral characteristics on increasing hydrophilicity of Alfalfa seeds treated with alternating current corona discharge field. Spectrochim Acta Part Mol Spectrosc. 2020; 236:118350. https://doi.org/10.1016/j.saa.2020.118350 PMid:32315952 DOI: https://doi.org/10.1016/j.saa.2020.118350
Mengjin W, Lixia J, Suling L, Zhigang Q, Sainan W, Yan R. Interfacial performance of high-performance fiber-reinforced composites improved by cold plasma treatment: A review. Surf Interfaces. 2021 Mar 1; 24:101077. https:// doi.org/10.1016/j.surfin.2021.101077 DOI: https://doi.org/10.1016/j.surfin.2021.101077
Macedo MJP, Silva GS, Feitor MC, Costa THC, Ito EN, Melo JDD. Surface modification of kapok fibers by cold plasma surface treatment. J Mater Res Technol. 2020; 9(2):2467-76. https://doi.org/10.1016/j.jmrt.2019. 12.077 DOI: https://doi.org/10.1016/j.jmrt.2019.12.077
Marais S, Gouanvé F, Bonnesoeur A, Grenet J, Poncin- Epaillard F, Morvan C, et al. Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Compos Part Appl Sci Manuf. 2005; 36(7):975-86. https://doi.org/10.1016/j.compositesa. 2004.11.008 DOI: https://doi.org/10.1016/j.compositesa.2004.11.008
Thomas L, Ali MM, Kumar VNA, Thomas S. Influence of cryogenic and chemical treatment on thermal and physical properties of hemp fabric. IOP Conf Ser Mater Sci Eng. 2021; 1114(1):012080. https://doi. org/10.1088/1757-899X/1114/1/012080 DOI: https://doi.org/10.1088/1757-899X/1114/1/012080
Kim MG, Moon JB, Kim CG. Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos Part Appl Sci Manuf. 2012; 43(9):1620-7. https://doi.org/10.1016/j.compositesa. 2012.04.001 DOI: https://doi.org/10.1016/j.compositesa.2012.04.001
Shao Y, Xu F, Liu W, Zhou M, Li W, Hui D, et al. Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite. Compos Part B Eng. 2017 Sep 15;125:195- 202. https://doi.org/10.1016/j.compositesb.2017.05.077 DOI: https://doi.org/10.1016/j.compositesb.2017.05.077
Amidi S. Deterioration of the FRP-to-concrete interface subject to moisture ingress: Effects of conditioning methods and silane treatment. Compos Struct. 2016; 153. https://doi.org/10.1016/j.compstruct.2016.06.035 DOI: https://doi.org/10.1016/j.compstruct.2016.06.035
Zeng JJ, Zhuge Y, Liang SD, Bai YL, Liao J, Zhang L. Durability assessment of PEN/PET FRP composites based on accelerated aging in alkaline solution/seawater with different temperatures. Constr Build Mater. 2022; 327:126992. https://doi.org/10.1016/j.conbuildmat. 2022.126992 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126992
Ma G, Yan L, Shen W, Zhu D, Huang L, Kasal B. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineralbased basalt. Compos Part B Eng. 2018; 153. https://doi. org/10.1016/j.compositesb.2018.09.015 DOI: https://doi.org/10.1016/j.compositesb.2018.09.015