Simulation of Self Tuning Shape Memory Alloy Based PZT Energy Harvester

Jump To References Section

Authors

  • Department of Mechanical Engineering, Malnad College of Engineering, Hassan – 573202, Karnataka ,IN
  • Department of Mathematics, Malnad College of Engineering, Hassan – 573202, Karnataka ,IN
  • Department of Mechatronics, Bannari Amman Institute of Technology, Sathyamangalam – 638401, Tamil Nadu ,IN
  • Department of Mechanical Engineering, National Institute of Engineering, Mysuru – 570008, Karnataka ,IN
  • Department of Mechanical Engineering, BMS College of Engineering, Bangalore – 560019, Karnataka ,IN
  • Department of Mechanical Engineering, Government Engineering College, Mosale Hosahalli, Hassan – 573212, Karnataka ,IN
  • Department of Mechanical Engineering, National Institute of Engineering, Mysuru – 570008, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/41751

Keywords:

Energy Harvester, Numerical Simulation, PZT, Shape Memory Alloy.

Abstract

Shape Memory Alloy (SMA) is tuned to match the frequency of excitation with the resonance frequency. Simulation is carried out numerically using COMSOL 5.3 software. This model consists of cantilevered beam without tip mass, PZT layer, Aluminium beam and SMA layer. Lead Zirconium titanate (PZT – 5A) is used as PZT layer for the conversion of energy. Harvesters power frequency response for different frequency ranges are carried out. The maximum output is obtained in excitation frequency with SMA and the results were compared without SMA material. The numerical simulation of the Frequency Response Functions (FRF) was compared with the analytical frequency response functions of the harvester. The maximum difference between the numerical and analytical results is 9.77 % in FRF’s and 1.85 % in resonance frequency. Materials used are Lead Zirconium titanate (PZT – 5A), SMA material and Aluminium beam which reaches the scopes of journal.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Vasundhara, M. G., Kalavathi, G. K., Pradeesh, E. L., Yogesha, K. K., Prakash, H. R., Muralidhara, B., & Hulugappa, B. (2023). Simulation of Self Tuning Shape Memory Alloy Based PZT Energy Harvester. Journal of Mines, Metals and Fuels, 71(12), 2669–2677. https://doi.org/10.18311/jmmf/2023/41751

 

References

Safaei M, Sodano HA, Anton SR. A review of energy harvesting using piezoelectric materials: State-of-theart a decade later (2008-2018). Smart Mater Struct. 2019 Oct; 28(11). https://doi.org/10.1088/1361-665X/ab36e4 DOI: https://doi.org/10.1088/1361-665X/ab36e4

Tang L, Wang J. Size effect of tip mass on performance of cantilevered piezoelectric energy harvester with a dynamic magnifier. Acta Mech. 2017 Nov; 228(11):3997- 4015. https://doi.org/10.1007/s00707-017-1910-8 DOI: https://doi.org/10.1007/s00707-017-1910-8

Kim Y-J, Lee C-H, Kim J-H, Lim JH. Numerical modeling of shape memory alloy plates considering tension/compression asymmetry and its verification under pure bending. Int J Solids Struct. 2018 Apr; 136- 137:77-88. https://doi.org/10.1016/j.ijsolstr.2017.12.004 DOI: https://doi.org/10.1016/j.ijsolstr.2017.12.004

Senthilkumar M, Vasundhara MG, Kalavathi GK. Electromechanical analytical model of shape memory alloy based tunable cantilevered piezoelectric energy harvester. Int J Mech Mater Des. 2018 Aug; 15:1-17. DOI: https://doi.org/10.1007/s10999-018-9413-x

Vasundhara MG, Senthilkumar M, Kalavathi GK. A distributed parametric model of shape memory alloybased resonant frequency tunable cantilevered PZT energy harvester with tip mass. ISSS J Micro Smart Syst. 2019 Apr; 8:1-12. https://doi.org/10.1007/s41683-019- 00034-0 DOI: https://doi.org/10.1007/s41683-019-00034-0

Vasundhara MG, Senthilkumar M, Kalavathi GK. A distributed parametric model of Brinson shape memory alloy based resonant frequency tunable cantilevered PZT energy harvester. Int J Mech Mater Des. 2018 Nov;1:555- 68. DOI: https://doi.org/10.1007/s10999-018-9429-2

Pasharavesh A, Ahmadian MT. Analytical and numerical simulations of energy harvesting using MEMS devices operating in nonlinear regime. Eur Phys J B. 2018 Oct; 91(10). Available from: https://doi.org/10.1140/epjb/ e2018-80609-8 DOI: https://doi.org/10.1140/epjb/e2018-80609-8

Belkourchia Y, Bakhti H, Azrar L. Numerical simulation of FSI model for energy harvesting grom ocean waves and beams with piezoelectric material. In: Proceedings of 2018 6th International Renewable and Sustainable Energy Conference, IRSEC 2018. Institute of Electrical and Electronics Engineers Inc.; 2018. https://doi. org/10.1109/IRSEC.2018.8702943 DOI: https://doi.org/10.1109/IRSEC.2018.8702943

Mekhalfia ML. Optimization of thermal energy harvesting by PZT using shape memory alloy. Energy Harvest Syst. 2021 Mar; 7(1). https://doi.org/10.1515/ ehs-2020-0003 DOI: https://doi.org/10.1515/ehs-2020-0003

Bakhtiari-Shahri M, Moeenfard H. Energy harvesting from unimorph piezoelectric circular plates under random acoustic and base acceleration excitations. Mech Syst Signal Process. 2019 Sep; 130:502-23. https:// doi.org/10.1016/j.ymssp.2019.05.017 DOI: https://doi.org/10.1016/j.ymssp.2019.05.017

Prauzek M, Konecny J, Vitasek M, Bajgar V, Musilek P. Powering batteryless embedded platforms by piezoelectric transducers: A pilot study. Elektron ir Elektrotechnika. 2019 Apr; 25(2):32-5. http://dx.doi. org/10.5755/j01.eie.25.2.23201 DOI: https://doi.org/10.5755/j01.eie.25.2.23201

Sheeraz MA, Butt Z, Khan AM, Mehmood S, Ali A, Azeem M, et al. Design and optimization of Piezoelectric Transducer (PZT-5H Stack). J Electron Mater. 2019 Oct; 48(10):6487-502. Available from: https://doi. org/10.1007/s11664-019-07453-7 DOI: https://doi.org/10.1007/s11664-019-07453-7

Pradeesh EL, Udhayakumar S, Vasundhara MG, Kalavathi GK. A review on piezoelectric energy harvesting. Vol. 28, Microsyst Technol. 2022;28:1797– 830. https://doi.org/10.1007/s00542-022-05334-4 DOI: https://doi.org/10.1007/s00542-022-05334-4

Wang L, Zhao L, Jiang Z, Luo G, Yang P, Han X, et al.. High accuracy comsol simulation method of bimorph cantilever for piezoelectric vibration energy harvesting. AIP Adv. 2019 Sep; 9(9) https://doi. org/10.1063/1.5119328 DOI: https://doi.org/10.1063/1.5119328

Chaudhuri D, Kundu S, Chattoraj N. Design and analysis of MEMS based piezoelectric energy harvester for machine monitoring application. Microsyst Technol. 2019 Apr; 25(4):1437-46. https://doi.org/10.1007/ s00542-018-4156-z DOI: https://doi.org/10.1007/s00542-018-4156-z

Alsaadi N, Sheeraz MA. Design and optimization of bimorph energy harvester based on Taguchi and ANOVA approaches. Alexandria Eng J. 2020 Feb; 59(1):117–27. https://doi.org/10.1016/j.aej.2019.12.016 DOI: https://doi.org/10.1016/j.aej.2019.12.016

Mahapatra S Das, Mohapatra PC, Aria AI, Christie G, Mishra YK, Hofmann S, et al. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv Sci. 2021; 8(17). https:// doi.org/10.1002/advs.202100864 PMid:34254467 PMCid:PMC8425885 DOI: https://doi.org/10.1002/advs.202100864

Pradeesh EL, Udhayakumar S. Effect of placement of piezoelectric material and proof mass on the performance of piezoelectric energy harvester. Mech Syst Signal Process. 2019 Sep; 130:664-76. https://doi. org/10.1016/j.ymssp.2019.05.044 DOI: https://doi.org/10.1016/j.ymssp.2019.05.044