Investigation on Influence of Surface Structuring on Brazed Joint between Tungsten Carbide and Steel

Jump To References Section

Authors

  • Senior Assistant Professor, School of Mechanical Engineering, REVA University, Bengaluru – 560064, Karnataka ,IN
  • Professor, Mechanical Engineering Department, Andhra University, Vizag – 530003, Andhra Pradesh ,IN
  • UG Students, School of Mechanical Engineering, REVA University, Bengaluru - 560 064, Karnataka ,IN
  • UG Students, School of Mechanical Engineering, REVA University, Bengaluru - 560 064, Karnataka ,IN
  • UG Students, School of Mechanical Engineering, REVA University, Bengaluru - 560 064, Karnataka ,IN
  • Engineer, KENNAMETAL India Ltd, Bengaluru – 560073, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/41771

Keywords:

Brazing, Micro Patterning, Single Shear Strength

Abstract

The aim of this project is to investigate the effects of surface structuring on brazed joints made of steel and tungsten carbide as well as how these effects affect the joints' mechanical characteristics. The industry uses brazing as a common connecting method, although brazing is known to produce considerable residual strains because of cooling thermal gradients. The strength, longevity, and fatigue resistance of the brazed joint can be impacted by the existence of residual stress, which might be crucial for applications in aerospace and automotive. The impact of several brazing parameters on the development of residual stress will be examined in this study, including temperature, heating rate, cooling rate, and material choice. To describe the residual stress state and assess the mechanical characteristics of the joint, experimental methods such X-ray diffraction and Shear Strength test will be used. The results of this project can be applied to numerous sectors to optimize the brazing procedure and enhance the performance and dependability of brazed components.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-03-08

How to Cite

N. Naga Suresh Babu, Subbaiah, V., Pawar, A., Udupa, A., B. Chethan, & Shidrameshetra, I. (2024). Investigation on Influence of Surface Structuring on Brazed Joint between Tungsten Carbide and Steel. Journal of Mines, Metals and Fuels, 71(12), 2610–2615. https://doi.org/10.18311/jmmf/2023/41771

 

References

Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science. 2011 Feb; 331(6017):568-71. https://doi.org/10.1126/science.1194975 PMid:21292974 DOI: https://doi.org/10.1126/science.1194975

Du M, Wu Y, Hao X. A facile chemical exfoliation method to obtain large size boron nitride nanosheets. CrystEngComm. 2013 Dec; 15(9):1782-6. https://doi. org/10.1039/c2ce26446c DOI: https://doi.org/10.1039/c2ce26446c

Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P. Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer. 2012 Jan; 53(2):471-80. https://doi.org/10.1016/j.polymer.2011.12.040 DOI: https://doi.org/10.1016/j.polymer.2011.12.040

Saha M, Tambe P, Pal S, Kubade P, Manivasagam G, Xavior MA, et al. Effect of non-ionic surfactant assisted modification of hexagonal boron nitride nanoplatelets on the mechanical and thermal properties of epoxy nanocomposites. Compos Interfaces. 2015 Jun; 22(7):611-27. https://doi.org/10.1080/09276440.2015.1056688 DOI: https://doi.org/10.1080/09276440.2015.1056688

Kulkarni HB, Tambe PB, Joshi GM. Influence of surfactant assisted exfoliation of hexagonal boron nitride nanosheets on mechanical, thermal and dielectric properties of epoxy Nanocomposites. Compos Interfaces. 2020 Sep; 27(6):529-50. https://doi.org/10.1080/092764 40.2019.1663115 DOI: https://doi.org/10.1080/09276440.2019.1663115

Zhang Y, Niu H, Liyun W, Wang N, Xu T, Zhou Z, et al. Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: Recent progresses and prospects. Nano Express. 2021 Oct; 2(4):042002. https://doi.org/10.1088/2632-959X/ac2f09 DOI: https://doi.org/10.1088/2632-959X/ac2f09

Park LS, Oh HS, Lee TH, Kim SH, Hwang JS. Synthesis and thermal properties of poly (phenylene sulfide-cophenylene sulfide ketone). J Ind Eng Chem. 2000 Sep; 6(5):331-7.

Xing J, Deng B, Liu Q. Effect of graphene nanoplatelets on the performance of polyphenylene sulfide composites produced by melt intercalation. High Perform Polym. 2017 Apr; 30(5):519-26. https://doi. org/10.1177/0954008317706733 DOI: https://doi.org/10.1177/0954008317706733

Gu J, Xie C, Li H, Dang J, Geng W, Zhang Q. Thermal percolation behavior of graphene nanoplatelets/polyphenylene sulfide thermal conductivity composites. Polym Compos. 2014 Jun; 35(6):1087-92. https://doi. org/10.1002/pc.22756 DOI: https://doi.org/10.1002/pc.22756

Kim K, Kim J. Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration. Compos Sci Technol. 2016 Oct; 134:209-16. https://doi.org/10.1016/j.compscitech.2016.08.024 DOI: https://doi.org/10.1016/j.compscitech.2016.08.024

Ma XK, Lee NH, Oh HJ, Jung SC, Lee WJ, Kim SJ. Morphology control of hexagonal boron nitride by a silane coupling agent. J Cryst Growth. 2011 Feb; 316(1):185-90. https://doi.org/10.1016/j.jcrysgro.2010.12.066 DOI: https://doi.org/10.1016/j.jcrysgro.2010.12.066

Chukov D, Nematulloev S, Zadorozhnyy M, Tcherdyntsev V, Stepashkin A, Zherebtsov D. Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites. Polymers. 2019 Apr; 11(4):684. https://doi.org/10.3390/ polym11040684 PMid:30991729 PMCid:PMC6523300 DOI: https://doi.org/10.3390/polym11040684

Kubade P, Tambe P. Influence of surface modification of halloysite nanotubes and its localization in PP phase on mechanical and thermal properties of PP/ABS blends. Compos Interfaces. 2017 Sep; 24(5):469-87. https://doi. org/10.1080/09276440.2016.1235442 DOI: https://doi.org/10.1080/09276440.2016.1235442

Lohar G, Tambe P, Jogi B. Influence of dual compatibilizer and carbon black on mechanical and thermal properties of PP/ABS blends and their composites. Compos Interfaces. 2020 Feb; 27(12):1101-36. https://doi.org/10 .1080/09276440.2020.1726137 DOI: https://doi.org/10.1080/09276440.2020.1726137

Hay JN, Luck DA. The conformation of crystalline poly (phenylene sulphide). Polymer. 2001 Sep; 42(19):8297- 301. https://doi.org/10.1016/S0032-3861(01)00335-4 DOI: https://doi.org/10.1016/S0032-3861(01)00335-4

Goyal RK, Samant SD, Thakar AK, Kadam A. Electrical properties of polymer/expanded graphite nanocomposites with low percolation. J Phys D: Appl Phys. 2010 Aug; 43(36):365404. https://doi.org/10.1088/0022- 3727/43/36/365404 DOI: https://doi.org/10.1088/0022-3727/43/36/365404

Khan MO, Leung SN, Chan E, Naguib HE, Dawson F, Adinkrah V. Effects of microsized and nanosized carbon fillers on the thermal and electrical properties of polyphenylene sulfide-based composites. Polym Eng Sci. 2013 Feb; 53(11):2398-406. https://doi.org/10.1002/ pen.23503 DOI: https://doi.org/10.1002/pen.23503