Darcy Heat Transfer Flow of Ternary Hybrid Nanofluid over a Sinusoidal Wavy Surface

Jump To References Section

Authors

  • Department of Mathematics, B. M. S. College of Engineering, Bengaluru – 560019, Karnataka ,IN
  • Department of Mathematics, St Joseph’s University, Bengaluru – 560027, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/43594

Keywords:

Darcy Porous Medium, Heat Transfer Enhancement, Sinusoidal Wavy Surface, Spectral Method, Ternary Hybrid Nanofluid.

Abstract

In this paper, heat transfer enhancement has been examined due to the ternary hybrid nanofluid over a vertical wavy surface. Darcy law is used to investigate the flow through porous medium. The non-uniform behavior of the vertical wall is defined by the sinusoidal nature. The governing equations for the conservation of mass, momentum along x and y directions and energy equations are derived and non-dimensionalized using appropriate transformations. Similarity transformations are used to convert the Partial Differential Equations (PDEs) to Ordinary Differential Equations (ODEs). The resultant ODEs are solved by employing spectral collocation method and the results are presented with various thermo-physical parameters of nanoparticles.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Mallikarjuna, B., & Champakumari, M. (2023). Darcy Heat Transfer Flow of Ternary Hybrid Nanofluid over a Sinusoidal Wavy Surface. Journal of Mines, Metals and Fuels, 71(12A), 220–228. https://doi.org/10.18311/jmmf/2023/43594

Issue

Section

Articles

 

References

Souby MM, Bargal MHS, Wang Y. Thermohydraulic performance improvement and entropy generation characteristics of a microchannel heat sink cooled with new hybrid nanofluids containing ternary/binary hybrid nanocomposites. Energy Sci Eng. 2021; 9(12):2493–513. https://doi.org/10.1002/ese3.982 DOI: https://doi.org/10.1002/ese3.982

Zahan I, Nasrin R, Khatun S. Thermal performance of tri-hybrid nanofluids through a convergent-divergent nozzle using distilled water-ethylene glycol mixtures. SSRN Electron J. 2022; 137:106254. https://doi. org/10.2139/ssrn.4097515 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106254

Sohail M et al. Galerkin finite element analysis for the augmentation in thermal transport of ternary ‑ hybrid nanoparticles by engaging non ‑ Fourier’s law. Sci Rep. 2022; 1–14. https://doi.org/10.1038/s41598-022-17424-4 DOI: https://doi.org/10.1038/s41598-022-17424-4

Algehyne EA, Alrihieli HF, Bilal M, Saeed A, Weera W. Numerical Approach toward Ternary Hybrid Nanofluid Flow Using Variable Diffusion and Non- Fourier’s Concept. 2022. https://doi.org/10.1021/ acsomega.2c03634

Alharbi KAM et al. Computational Valuation of darcy ternary-hybrid nanofluid flow across an extending cylinder with induction effects. Micromachines. 2022; 13(4). https://doi.org/10.3390/mi13040588 DOI: https://doi.org/10.3390/mi13040588

Khan SA, Hayat T, Alsaedi A. Thermal conductivity performance for ternary hybrid nanomaterial subject to entropy generation. Energy Reports. 2022; 8:9997– 10005. https://doi.org/10.1016/j.egyr.2022.07.149 DOI: https://doi.org/10.1016/j.egyr.2022.07.149

Ramzan M, Dawar A, Saeed A, Kumam P, Sitthithakerngkiet K, Lone SA. Analysis of the partially ionized kerosene oil-based ternary nanofluid flow over a convectively heated rotating surface. Open Phys. 2022; 20(1):507–25. https://doi.org/10.1515/phys-2022-0055 DOI: https://doi.org/10.1515/phys-2022-0055

Manjunatha S, Puneeth V, Gireesha BJ, Chamkha AJ. Theoretical study of convective heat transfer in ternary nanofluid flowing past a stretching sheet. J Appl Comput Mech. 2022; 8(4):1279–86. 10.22055/ JACM.2021.37698.3067

Srinivasacharya D, Mallikarjuna B, Bhuvanavijaya R. Soret and Dufour effects on mixed convection along a vertical wavy surface in a porous medium with variable properties. Ain Shams Eng J. 2015; 6(2):553–64. https:// doi.org/10.1016/j.asej.2014.11.007 DOI: https://doi.org/10.1016/j.asej.2014.11.007

Srinivasacharya D, Mallikarjuna B, Bhuvanavijaya R. Effects of thermophoresis and variable properties on mixed convection along a vertical wavy surface in a fluid saturated porous medium. Alexandria Eng J. 2016; 55(2):1243–53. https://doi.org/10.1016/j.aej.2016.04.015 DOI: https://doi.org/10.1016/j.aej.2016.04.015

Srinivasacharya D, Mallikarjuna B, Chandrasekhara G. Convective Heat Transfer Flow along a Sinusoidal Wavy Surface in a Porous Medium with Variable Permeability. Procedia Eng. 2015; 127:524–30. https:// doi.org/10.1016/j.proeng.2015.11.340 DOI: https://doi.org/10.1016/j.proeng.2015.11.340

Rees DAS, Pop I. A note on free convection along a vertical wavy surface in a porous medium. J Heat Transfer. 1994; 116(2):505–8. https://doi.org/10.1115/1.2911430 DOI: https://doi.org/10.1115/1.2911430

Lakshmi Narayana PA, Sibanda P. Soret and Dufour effects on free convection along a vertical wavy surface in a fluid saturated Darcy porous medium. Int J Heat Mass Transf. 2010; 53(15–16):3030–4. https://doi. org/10.1016/j.ijheatmasstransfer.2010.03.025 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.025

Srinivasacharya D, Mallikarjuna B, Bhuvanavijaya R. Radiation effect on mixed convection over a vertical wavy surface in Darcy porous medium with variable properties. J Appl Sci Eng. 2015; 18(3):265–74. 10.6180/ jase.2015.18.3.07

Kumari M. Free-convection boundary-layer flow of a non-Newtonian fluid along a vertical wavy surface. 1995; 1983:0–6.

Bhuvanavijaya R, Mallikarjuna B. Effect of variable thermal conductivity on convective heat and mass transfer over a vertical plate in a rotating system with variable porosity regime. J Nav Archit Mar Eng. 2014; 11(1):83– 92. https://doi.org/10.3329/jname.v11i1.16488 DOI: https://doi.org/10.3329/jname.v11i1.16488

Scroll P, For D. Numerical Heat Transfer, Part A : Applications : A Study of Free Convection Induced by a Vertical Wavy Surface with Heat Flux in a Porous Enclosure. 2010; 37–41.

Kabir KH, Alim MA, Andallah LS. Effects of viscous dissipation on MHD Natural convection flow along a vertical wavy surface with heat generation. Am J Comput Math. 2013; 03(02):91–8. https://doi.org/10.4236/ ajcm.2013.32015 DOI: https://doi.org/10.4236/ajcm.2013.32015

Siddiqa S, Sulaiman M, Hossain MA, Islam S, Gorla RSR. Gyrotactic bioconvection flow of a nanofluid past a vertical wavy surface. Int J Therm Sci. 2016; 108:244–50. https://doi.org/10.1016/j.ijthermalsci.2016.05.017 DOI: https://doi.org/10.1016/j.ijthermalsci.2016.05.017

Mahdy A, Ahmed SE. Laminar free convection over a vertical wavy surface embedded in a porous medium saturated with a nanofluid. Transp Porous Media. 2012; 91(2):423–35. https://doi.org/10.1007/s11242-011- 9852-4 DOI: https://doi.org/10.1007/s11242-011-9852-4

Abu-Mulaweh HI, Armaly BF, Chen TS. Laminar natural convection flow over a vertical forward-facing step. J Thermophys Heat Transf. 1996; 10(3):517–23. https:// doi.org/10.2514/3.819 DOI: https://doi.org/10.2514/3.819

Mallikarjuna B, Shehzad SA. Spectral-quasilinearization method and multiple regression analysis of reiner-philippoff fluid flow. 2022; 1–12. https://doi. org/10.1002/zamm.202100071

Minkowycz WJ. With Application to Heat Transfer From a Dike. 1977; 82(14):2040–4. https://doi.org/10.1029/ JB082i014p02040 DOI: https://doi.org/10.1029/JB082i014p02040