On Edge Irregularity Strength of Mycielskian of Paths and Cycles
DOI:
https://doi.org/10.18311/jmmf/2023/43610Keywords:
Edge Irregularity Strength, Mycielskian of Paths and Cycles.Abstract
For a graph G having no loops and parallel edges, a labeling on the vertex set of G,Ψ:V(G)→{1,2,…,α} is refers to α-labeling. Let ab∈G be an edge. Then the weight the edge ab is zΨ (ab)=Ψ(a)+Ψ(b). An α-labeling on the vertex set of G is refers to be an edge irregular α-labeling of G if zΨ (a)≠zΨ (b),where a≠b in G. The least number α for which the graph G has an edge irregular α-labeling is referred to the edge irregularity strength of G, written es(G). The edge irregularity strength of Mycielskian of paths and cycles is computed.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Chartrand G, Jacobson MS, Lehel J, Oellermann OR, Saba F. Irregular networks. Congressus Numerantium. 1988; 64:187-192.
Ahmad A, Al-Mushayt O, Baca M. On edge irregularity strength of graphs. Appl Math Comput. 2014; 243:607- 10. https://doi.org/10.1016/j.amc.2014.06.028 DOI: https://doi.org/10.1016/j.amc.2014.06.028
Lin W, Wu J, Lam PCB, Gu G. Several parameters of generalized Mycielskians. Discrete Appl Math. 2006; 154:1173-82. https://doi.org/10.1016/j.dam.2005.11.001 DOI: https://doi.org/10.1016/j.dam.2005.11.001
Ahmad A, Baca M, Nadeem MF. On the edge irregularity strength of Toeplitz graphs. Sci Bull Politeh Univ Buchar. 2018; 78:155-62.
Tarawneh I, Hasni R, Ahmad A. On the edge irregularity strength of corona product of graphs with paths. Appl Math E-Notes. 2016; 16:80-7.
Tarawneh I, Hasni R, Asim MA, Siddiqui MA. On the edge irregularity strength of disjoint union of graphs. Ars Combinatoria. 2019; 142:239-49.
Salma U, Nagesh HM. On the edge irregularity strength of sunlet graph. Bull Int Math Virtual Inst. 2022; 12(2):213- 17.
Nagesh HM, Girish VR. On edge irregularity strength of line graph and line cut-vertex graph of comb graph. Notes on Number Theory and Discrete Mathematics. 2022; 28(3):517-524. https://doi.org/10.7546/nntdm. 2022.28.3.517-524 DOI: https://doi.org/10.7546/nntdm.2022.28.3.517-524
Ahmad A, Bokhary U, Ahtsham S, Imaran M, BaigAQ. Vertex irregular labelings of cubic graphs. Util Math. 2013; 91:287-99.
Ahmad A, Baca M. On vertex irregular total labeling. Ars Combin. (in press).
Aigner M, Triesch E. Irregular assignemnts of trees and forests. SIAM J Discrete Math. 1991; 3(4). https://doi. org/10.1137/0403038 DOI: https://doi.org/10.1137/0403038
Al-Mushayt O. Irregular assignemnts of trees of certain families of graph with path P2. Ars Combin. (in press). 13. Amar D, Togni O. Irregualr strength of trees. Discrete Math. 1998; 190:15-38. https://doi.org/10.1016/S0012- 365X(98)00112-5 DOI: https://doi.org/10.1016/S0012-365X(98)00112-5
Bohman T, Kravitz D. On the irregularity strength of trees. J Graph Theory. 2004; 45:241-54. https://doi.org/10.1002/jgt.10158 DOI: https://doi.org/10.1002/jgt.10158
Baca M, Jendrol S, Miller M, Ryan J. On irregular total labellings. Discrete Math. 2007; 307:1378-88. https://doi. org/10.1016/j.disc.2005.11.075 DOI: https://doi.org/10.1016/j.disc.2005.11.075
Cammack LA, Schelp RH, Schrag GC. Irregularity strength of full d-ary trees. Congr Number. 1991; 81:113-19.
Dimitz JH, Garnick DK, Gyarfas A. On the irregularity strength of the mxn grid. J Graph Theory. 1992; 16:355- 74. https://doi.org/10.1002/jgt.3190160409 DOI: https://doi.org/10.1002/jgt.3190160409
Frieze A, Gould RJ, Karonski M, Pfender F. On graph irregularity strength. J Graph Theory; 2002: 41:120-37. https://doi.org/10.1002/jgt.10056 DOI: https://doi.org/10.1002/jgt.10056
Nierhoff T. A tight bound on the irregularity strength of graphs. SIAM J Discrete Math. 2000; 13:313-23. https:// doi.org/10.1137/S0895480196314291 DOI: https://doi.org/10.1137/S0895480196314291
Przybylo J. Linear bound on the irregularity strength and total vertex irregularity strength of graphs. SIAM J Discrete Math. 2008; 23:511-16. https://doi. org/10.1137/070707385 DOI: https://doi.org/10.1137/070707385