On Edge Irregularity Strength of Mycielskian of Paths and Cycles

Jump To References Section

Authors

  • Department of Science and Humanities, PES University, Bangalore ,IN
  • Department of Science and Humanities, PES University, Bengaluru – 560085, Karnataka ,IN
  • Department of Mathematics, M. S. Ramaiah Institute of Technology, Bengaluru – 560054, Karnataka ,IN
  • Department of Mathematics, University College of Science, Tumkuru University, Tumakuru – 572103, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/43610

Keywords:

Edge Irregularity Strength, Mycielskian of Paths and Cycles.

Abstract

For a graph G having no loops and parallel edges, a labeling on the vertex set of G,Ψ:V(G)→{1,2,…,α} is refers to α-labeling. Let ab∈G be an edge. Then the weight the edge ab is zΨ (ab)=Ψ(a)+Ψ(b). An α-labeling on the vertex set of G is refers to be an edge irregular α-labeling of G if zΨ (a)≠zΨ (b),where a≠b in G. The least number α for which the graph G has an edge irregular α-labeling is referred to the edge irregularity strength of G, written es(G). The edge irregularity strength of Mycielskian of paths and cycles is computed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-05-24

How to Cite

Salma, U., Nagesh, H. M., Azghar Pasha, B., & Narahari, N. (2024). On Edge Irregularity Strength of Mycielskian of Paths and Cycles. Journal of Mines, Metals and Fuels, 71(12A), 208–213. https://doi.org/10.18311/jmmf/2023/43610

Issue

Section

Articles

 

References

Chartrand G, Jacobson MS, Lehel J, Oellermann OR, Saba F. Irregular networks. Congressus Numerantium. 1988; 64:187-192.

Ahmad A, Al-Mushayt O, Baca M. On edge irregularity strength of graphs. Appl Math Comput. 2014; 243:607- 10. https://doi.org/10.1016/j.amc.2014.06.028 DOI: https://doi.org/10.1016/j.amc.2014.06.028

Lin W, Wu J, Lam PCB, Gu G. Several parameters of generalized Mycielskians. Discrete Appl Math. 2006; 154:1173-82. https://doi.org/10.1016/j.dam.2005.11.001 DOI: https://doi.org/10.1016/j.dam.2005.11.001

Ahmad A, Baca M, Nadeem MF. On the edge irregularity strength of Toeplitz graphs. Sci Bull Politeh Univ Buchar. 2018; 78:155-62.

Tarawneh I, Hasni R, Ahmad A. On the edge irregularity strength of corona product of graphs with paths. Appl Math E-Notes. 2016; 16:80-7.

Tarawneh I, Hasni R, Asim MA, Siddiqui MA. On the edge irregularity strength of disjoint union of graphs. Ars Combinatoria. 2019; 142:239-49.

Salma U, Nagesh HM. On the edge irregularity strength of sunlet graph. Bull Int Math Virtual Inst. 2022; 12(2):213- 17.

Nagesh HM, Girish VR. On edge irregularity strength of line graph and line cut-vertex graph of comb graph. Notes on Number Theory and Discrete Mathematics. 2022; 28(3):517-524. https://doi.org/10.7546/nntdm. 2022.28.3.517-524 DOI: https://doi.org/10.7546/nntdm.2022.28.3.517-524

Ahmad A, Bokhary U, Ahtsham S, Imaran M, BaigAQ. Vertex irregular labelings of cubic graphs. Util Math. 2013; 91:287-99.

Ahmad A, Baca M. On vertex irregular total labeling. Ars Combin. (in press).

Aigner M, Triesch E. Irregular assignemnts of trees and forests. SIAM J Discrete Math. 1991; 3(4). https://doi. org/10.1137/0403038 DOI: https://doi.org/10.1137/0403038

Al-Mushayt O. Irregular assignemnts of trees of certain families of graph with path P2. Ars Combin. (in press). 13. Amar D, Togni O. Irregualr strength of trees. Discrete Math. 1998; 190:15-38. https://doi.org/10.1016/S0012- 365X(98)00112-5 DOI: https://doi.org/10.1016/S0012-365X(98)00112-5

Bohman T, Kravitz D. On the irregularity strength of trees. J Graph Theory. 2004; 45:241-54. https://doi.org/10.1002/jgt.10158 DOI: https://doi.org/10.1002/jgt.10158

Baca M, Jendrol S, Miller M, Ryan J. On irregular total labellings. Discrete Math. 2007; 307:1378-88. https://doi. org/10.1016/j.disc.2005.11.075 DOI: https://doi.org/10.1016/j.disc.2005.11.075

Cammack LA, Schelp RH, Schrag GC. Irregularity strength of full d-ary trees. Congr Number. 1991; 81:113-19.

Dimitz JH, Garnick DK, Gyarfas A. On the irregularity strength of the mxn grid. J Graph Theory. 1992; 16:355- 74. https://doi.org/10.1002/jgt.3190160409 DOI: https://doi.org/10.1002/jgt.3190160409

Frieze A, Gould RJ, Karonski M, Pfender F. On graph irregularity strength. J Graph Theory; 2002: 41:120-37. https://doi.org/10.1002/jgt.10056 DOI: https://doi.org/10.1002/jgt.10056

Nierhoff T. A tight bound on the irregularity strength of graphs. SIAM J Discrete Math. 2000; 13:313-23. https:// doi.org/10.1137/S0895480196314291 DOI: https://doi.org/10.1137/S0895480196314291

Przybylo J. Linear bound on the irregularity strength and total vertex irregularity strength of graphs. SIAM J Discrete Math. 2008; 23:511-16. https://doi. org/10.1137/070707385 DOI: https://doi.org/10.1137/070707385