A Python-Based GUI Approach for Efficient Component Design of Compound Die for Composite Material: 3D and 2D CAD Modeling

Jump To References Section

Authors

  • Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai - 410221, Maharashtra ,IN
  • Department of Mechanical Engineering, Chhatrapati Shivaji Maharaj University, Panvel, Navi Mumbai - 410221 ,IN
  • Sandip Institute of Technology and Research Centre, Nashik - 422213, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jmmf/2024/45765

Keywords:

API Based CAD, GUI Based CAD Modeling, Knowledge Based System, Python Programming

Abstract

This article presents a Python-based parametric Computer-Aided Design (CAD) system coupled with the AutoCAD API for the automation of compound die design. The system seeks to minimize the duration allocated to repeated operations, therefore promoting innovation. The graphical user interface facilitates the straightforward entry of design parameters and the automated production of precise manufacturing drawings. Advanced approaches, including Finite Element Analysis (FEA), topology optimization, and machine learning, are utilized to improve product design, reduce material consumption, and forecast component lifespan under operational stressors. The technology markedly decreases design time relative to conventional methods, rendering it optimal for sectors emphasizing bulk customization and batch production. Moreover, it enhances Time-To-Market (TTM) by providing an efficient process from design to manufacturing, while reducing errors and material waste. This tool has the potential for extensive utilization in mechanical design, especially within small and mediumsized enterprises.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-10-30

How to Cite

Rathod, V., Karanjkar, A., & Sawai, N. (2024). A Python-Based GUI Approach for Efficient Component Design of Compound Die for Composite Material: 3D and 2D CAD Modeling. Journal of Mines, Metals and Fuels, 72(10), 1075–1091. https://doi.org/10.18311/jmmf/2024/45765

 

References

Kumar S, Singh R. A knowledge-based system for selection of progressive die components. J Achiev Mater Manuf Eng. 2007; 20(1-2):475-78. https://doi.org/10.1504/IJCMSSE.2007.013846

Kashid S, Kumar S. An expert system for selection of components of compound die. J Adv Manuf Syst. 2014; 13(3):181-95. https://doi.org/10.1142/S0219686714500115

Kumar S, Singh R. A low-cost knowledge base system framework for progressive die design. J Mater Process Technol. 2004; 153:958-64. https://doi.org/10.1016/j.jmatprotec.2004.04.236

Hambli R, Guerin F. Application of a neural network for optimum clearance prediction in sheet metal blanking processes. Int J Adv Manuf Technol. 2003; 22(1-2):20-5. https://doi.org/10.1007/s00170-0021437-5

Nee AYC, Foong KY. Some considerations in the design and automatic staging of progressive dies. J Mater Process Technol. 1992; 29(1-3):147-58. https://doi.org/10.1016/0924-0136(92)90431-Q

bin Ab Kadir AR, Wan NNI, bin Said MS, binti Zubir B, bin Ibrahim MZ, Krishnan P. Design, and analysis of punch and die of a micro blanking tool. Int J Recent Technol Eng. 2019; 8(4):827-33. https://doi.org/10.35940/ijrte.D7416.118419

Kumar S, Singh R. An automated design system for progressive die. Expert Syst Appl. 2011; 38(4):4482-9. https://doi.org/10.1016/j.eswa.2010.09.121

Shaheen W, Kanapathipillai S, Mathew P, Prusty BG. Optimization of compound die piercing punches and double cutting process parameters using finite element analysis. Proc Inst Mech Eng Part B J Eng Manuf. 2020; 234(1-2):3-13. https://doi.org/10.1177/0954405419855507

Kadarno P, Mori KI, Abe Y, Abe T. Punching process including thickening of hole edge for improvement of fatigue strength of ultra-high strength steel sheet. Manuf Rev. 2014; 1:4. https://doi.org/10.1051/mfreview/2014003

Kumar RM. Optimization of die design parameters in blanking operation using genetic algorithm. i-Manager’s J Mech Eng. 2016; 6(2):30. https://doi.org/10.26634/jme.6.2.4890

Skampardonis N, Tsirkas S, Grammatikopoulos S. Design, and analysis of an industrial, progressive die for cutting and forming. 2021. https://doi.org/10.21203/rs.3.rs-262802/v1

Shaheen W, Kanapathipillai S, Mathew P, Prusty BG. Optimization of compound die piercing punches and double cutting process parameters using finite element analysis. Proc Inst Mech Eng Part B J Eng Manuf. 2020; 234(1-2):3-13. https://doi.org/10.1177/0954405419855507

Mehta AM, Rus D. An end-to-end system for designing mechanical structures for print-and-fold robots. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA); 2014; 1460-5. https://doi.org/10.1109/ICRA.2014.6907044

Machado F, Malpica N, Borromeo S. Parametric CAD modeling for open-source scientific hardware:comparing OpenSCAD and FreeCAD Python scripts. PLoS One. 2019; 14(12):1-30. https://doi.org/10.1371/journal.pone.0225795

Tezzele M, Demo N, Mola A, Rozza G. PyGeM: Python geometrical morphing. Softw Impacts. 2021; 7:100047. https://doi.org/10.1016/j.simpa.2020.100047

Salunkhe S, Kumar S. Applications of artificial neural network to sheet metal work - A review. Am J Intell Syst. 2013; 2(7):168-76. https://doi.org/10.5923/j.ajis.20120207.03

Zuo ZH, Xie YM. A simple and compact Python code for complex 3D topology optimization. Adv Eng Softw. 2015; 85:1-11. https://doi.org/10.1016/j.advengsoft.2015.02.006

Agarwal D, Robinson TT, Armstrong CG. A CAD based framework for optimizing performance while ensuring assembly fit. In: Wang S, Price M, Lim M, Jin Y, Luo Y, Chen R, editors. Recent advances in intelligent manufacturing. Singapore: Springer; 2018; 1-12. https://doi.org/10.1007/978-981-13-2396-6_7

Mukundakrishnan B, Rajmohan N, Rajnarayan DG, Fugal S. A script-based CAD system for aerodynamic design. In: AIAA Aviation 2019 Forum. 2019. https://doi.org/10.2514/6.2019-3069

Mathur A, Pirron M, Zufferey D. Interactive programming for parametric CAD. Comput Graph Forum. 2020; 00(00):1-18.