Antimicrobial Activity of Curcumin and Deuterated Curcumin
DOI:
https://doi.org/10.18311/jnr/2022/29686Keywords:
Antibacterial Antifungal Anti-TB Activity, Deuterated CurcuminAbstract
Deuterium (D) and hydrogen (H) are bioisosteres because they are similar in size and shape with alike physiochemical properties and hence expect similar biological activity. The purpose of replacing H with D is to extend the time the active drug species spends in plasma, resulting in increased effectiveness and/or the avoidance of unwanted side effects. Deutetrabenazine was the first deuterated medicinal molecule, recently authorized by the FDA for the treatment of chorea “an involuntary movement disorder” associated with tardive dyskinesia and Huntington’s disease. Curcumin is found to have a long history of use in human disorders such as inflammation, metabolic syndrome, arthritis, anxiety, antimicrobial, hyperlipidemia, etc., Curcumin’s oral bioavailability and water solubility are low, resulting in poor absorption, rapid metabolism, and systemic elimination. To overcome curcumin’s drawbacks, H/D exchange was performed in curcumin, which was then characterized and tested for antibacterial, antifungal, and anti-tubercular activities. The deuterated compound showed equipotent antibacterial activity when compared with the non-deuterated compound and had better anti-fungal, anti-tubercular activity compared to its parent compound.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Accepted 2022-05-24
Published 2022-07-30
References
Chang Y, Myers T, Wasa M. B (C6F5) 3?Catalyzed ?? Deuteration of Bioactive Carbonyl Compounds with D2O. Adv Synth Catal. 2020; 362(2):360–4. https:// doi.org/10.1002/adsc.201901419. PMid:32256276. PMCid:PMC7108789 DOI: https://doi.org/10.1002/adsc.201901419
Zhong L, Hou C, Zhang L, Zhao J, Li F, Li W. Synthesis of deuterium-enriched sorafenib derivatives and evaluation of their biological activities. Mol Divers. 2019; 23(2):341–50. https://doi.org/10.1007/s11030-018-9875-7. PMid:30238393 DOI: https://doi.org/10.1007/s11030-018-9875-7
Harbeson SL, Tung RD. Deuterium in drug discovery and development. Annu Rep Med Chem. 2011; 46:403–17. https://doi.org/10.1016/B978-0-12-386009-5.00003-5
Russak EM, Bednarczyk EM. Impact of deuterium substitution on the pharmacokinetics of pharmaceuticals. Ann Pharmacother. 2019; 53(2):211–6. https://doi. org/10.1177/1060028018797110. PMid:30136594 DOI: https://doi.org/10.1177/1060028018797110
Xu R, Zhan M, Peng L, Pang X, Yang J, Zhang T, et al. Design, synthesis and biological evaluation of deuterated nintedanib for improving pharmacokinetic properties. J Labelled Comp Radiopharm. 2015; 58(7):308–12. https://doi.org/10.1002/jlcr.3299. Mid:26011584 DOI: https://doi.org/10.1002/jlcr.3299
Jiang J, Pang X, Li L, Dai X, Diao X, Chen X, et al. Effect of N-methyl deuteration on metabolism, and pharmacokinetics of enzalutamide. Drug Des Devel Ther. 2016; 10:2181. https://doi.org/10.2147/DDDT.S111352. PMid:27462143. PMCid:PMC4939996 DOI: https://doi.org/10.2147/DDDT.S111352
Harbeson SL, Tung RD. Deuterium in drug discovery and development. Annu Rep Med Chem. 2011; 46:403–17. https://doi.org/10.1016/B978-0-12-386009-5.00003-5 DOI: https://doi.org/10.1016/B978-0-12-386009-5.00003-5
Schneider F, Bradbury M, Baillie TA, Stamler D, Hellriegel E, Cox DS, et al. Pharmacokinetic and metabolic profile of deutetrabenazine (TEV?50717) compared with tetrabenazine in healthy volunteers. Clin Transl Sci. 2020;13(4):707– 17. https://doi.org/10.1111/cts.12754. PMid:32155315. PMCid:PMC7359938 DOI: https://doi.org/10.1111/cts.12754
Timmins GS. Deuterated drugs: where are we now? Expert opinion on therapeutic patents. 2014; 24(10):1067– 75. https://doi.org/10.1517/13543776.2014.943184. PMid:25069517. PMCid:PMC4579527 DOI: https://doi.org/10.1517/13543776.2014.943184
Pirali T, Serafini M, Cargnin S, Genazzani AA. Applications of deuterium in medicinal chemistry. J Med Chem. 2019; 62(11):5276–97. https://doi.org/10.1021/acs. jmedchem.8b01808. PMid:30640460 DOI: https://doi.org/10.1021/acs.jmedchem.8b01808
Valero M, Weck R, Güssregen S, Atzrodt J, Derdau V. Highly selective directed iridium?catalyzed hydrogen isotope exchange reactions of aliphatic amides. Angew Chem Int Ed. 2018; 57(27):8159–63. https://doi.org/10.1002/ anie.201804010. PMid:29693316. PMCid:PMC6033151 DOI: https://doi.org/10.1002/anie.201804010
Ray PC, Pawar YD, Singare DT, Deshpande TN, Singh GP. Novel process for preparation of tetrabenazine and deutetrabenazine. Org Process Res Dev. 2018; 22(4):520–6. https://doi.org/10.1021/acs.oprd.8b00011 DOI: https://doi.org/10.1021/acs.oprd.8b00011
Kaur S, Gupta M. Deuteration as a tool for optimization of metabolic stability and toxicity of drugs. Glob J Pharmaceu Sci. 2017; 1. https://doi.org/10.19080/ GJPPS.2017.01.555566 DOI: https://doi.org/10.19080/GJPPS.2017.01.555566
Hu Y, Liang L, Wei WT, Sun X, Zhang XJ, Yan M. A convenient synthesis of deuterium labeled amines and nitrogen heterocycles with KOt-Bu/DMSO-d6. Tetrahedron. 2015; 71(9):1425–30. https://doi.org/10.1016/j.tet.2015.01.015 DOI: https://doi.org/10.1016/j.tet.2015.01.015
Liu Z, Ren X, Wang P. A practical synthesis of deuterated methylamine and dimethylamine. J Chem Res. 2021; 45(3– 4):265–8. https://doi.org/10.1177/1747519820969636 DOI: https://doi.org/10.1177/1747519820969636
Krause-Heuer AM, Yepuri NR, Darwish TA, Holden PJ. Mild conditions for deuteration of primary and secondary arylamines for the synthesis of deuterated optoelectronic organic molecules. Molecules. 2014; 19(11):18604–17. https://doi.org/10.3390/molecules191118604. PMid:25401402. PMCid:PMC6271713 DOI: https://doi.org/10.3390/molecules191118604
Gant TG. Using deuterium in drug discovery: Leaving the label in the drug. J Med Chem. 2014; 57(9):3595–611. https://doi.org/10.1021/jm4007998. PMid:24294889 DOI: https://doi.org/10.1021/jm4007998
Zheng QT, Yang ZH, Yu LY, Ren YY, Huang QX, Liu Q, et al. Synthesis and antioxidant activity of curcumin analogs. J Asian Nat Prod Res. 2017; 19(5):489–503. https://doi.org/10.1080/10286020.2016.1235562. PMid:27690628 DOI: https://doi.org/10.1080/10286020.2016.1235562
Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K. Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PloS one. 2015; 10(3). https:// doi.org/10.1371/journal.pone.0121313. PMid:25811596. PMCid:PMC4374920 DOI: https://doi.org/10.1371/journal.pone.0121313
Burapan S, Kim M, Han J. Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota. J Agric Food Chem. 2017; 65(16):3305–10. https://doi.org/10.1021/acs.jafc.7b00943. PMid:28401758 DOI: https://doi.org/10.1021/acs.jafc.7b00943
Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv. 2014; 32(6):1053–64. https://doi.org/10.1016/j.biotechadv.2014.04.004. PMid:24793420 DOI: https://doi.org/10.1016/j.biotechadv.2014.04.004
Nantasenamat C, Simeon S, Hafeez A, Prachayasittikul V, Worachartcheewan A, Songtawee N, et al. Elucidating the structure-activity relationship of curcumin and its biological activities. Curcumin: Synthesis, Emerging Role in Pain Management and Health Implications, Pouliquen, DL, (editor); 2014. p. 49–86.
Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al. Synthesis and SAR study of diarylpentanoid analogues as new anti-inflammatory agents. Molecules. 2014; 19(10):16058–81. https://doi.org/10.3390/molecules191016058. PMid:25302700. PMCid:PMC6271425 DOI: https://doi.org/10.3390/molecules191016058
Yao EC, Xue L. Therapeutic effects of curcumin on Alzheimer’s disease. Advances in Alzheimer’s disease. 2014; 3(04):145. https://doi.org/10.4236/aad.2014.34014 DOI: https://doi.org/10.4236/aad.2014.34014
Teiten MH, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules. 2014; 19(12):20839–63. https://doi.org/10.3390/molecules191220839. PMid:25514225. PMCid:PMC6271749 DOI: https://doi.org/10.3390/molecules191220839
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm. 2007; 4(6):807–18. https://doi.org/10.1021/mp700113r. PMid:17999464 DOI: https://doi.org/10.1021/mp700113r
Mohamed SA, El-Shishtawy RM, Al-Bar OA, Al-Najada AR. Chemical modification of curcumin: Solubility and antioxidant capacity. Int J Food Prop. 2017; 20(3):718–24. https://doi.org/10.1080/10942912.2016.1177545 DOI: https://doi.org/10.1080/10942912.2016.1177545
Pandit RS, Gaikwad SC, Agarkar GA, Gade AK, Rai M. Curcumin nanoparticles: Physico-chemical fabrication and it’s in vitro efficacy against human pathogens. 3 Biotech. 2015; 5(6):991–7. https://doi.org/10.1007/s13205-015- 0302-9. PMid:28324406. PMCid:PMC4624150 DOI: https://doi.org/10.1007/s13205-015-0302-9
Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008; 76(11):1590–611. https://doi.org/10.1016/j.bcp.2008.08.008. PMid:18775680 DOI: https://doi.org/10.1016/j.bcp.2008.08.008
Mohan AC, Geetha S, Gajalakshmi R, Divya SR, Dhanarajan MS. Determination of molecular property, bioactivity score and binding energy of the phytochemical compounds present in Cassia auriculata by molinspiration and DFT method. Texila International Journal of Basic Medical Science. 2017; 2(2):1–5. https://doi.org/10.21522/TIJBMS.2016.02.02.Art002 DOI: https://doi.org/10.21522/TIJBMS.2016.02.02.Art002
Alodeani EA, Arshad M, Izhari MA. Antileishmanial activity and computational studies of some hydrazone derivatives possessing quinoline nucleus. In vitro. 2015; 1:3.
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1):1–3. https://doi.org/10.1038/srep42717. PMid:28256516. PMCid:PMC5335600 DOI: https://doi.org/10.1038/srep42717
Sicak Y. Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1, 2, 4-triazoles: their structure-activity relationship and SwissADME predictions. Med Chem Res. 2021 Aug; 30(8):1557–68. https:// doi.org/10.1007/s00044-021-02756-z DOI: https://doi.org/10.1007/s00044-021-02756-z
Liu M, Chen X, Chen T, Yin SF. A facile and general acid-catalyzed deuteration at methyl groups of N-heteroarylmethanes. Org Biomol Chem. 2017; 15(12):2507–11. https://doi.org/1.1039/C7OB00062F. PMid:28266672 DOI: https://doi.org/10.1039/C7OB00062F
Rubin LG, Tucci V, Cercenado E, Eliopoulos G, Isenberg HD. Vancomycin-resistant Enterococcus faecium in hospitalized children. Infect Control Hosp Epidemiol. 1992; 13(12):700– 5. https://doi.org/10.2307/30146486. PMid:1289397 DOI: https://doi.org/10.1086/648342
Lourenco MC, de Souza MV, Pinheiro AC, Ferreira MD, Gonçalves RS, Nogueira TC, Peralta MA. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. Arkivoc. 2007; 15:181–91. https://doi.org/10.3998/ark.5550190.0008.f18
Nona DA, Blake MI, Crespi HL, Katz JJ. Effect of deuterium oxide on the culturing of Penicillium janczewskii II. Isolation of fully deuterated griseofulvin. J Pharm Sci. 1968; 57(6):975–9. https://doi.org/10.1002/jps.2600570611. PMid:4299548 DOI: https://doi.org/10.1002/jps.2600570611
Lourenco MC, de Souza MV, Pinheiro AC, Ferreira MD, Gonçalves RS, Nogueira TC, Peralta MA. Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. Arkivoc. 2007; 15:181–91. https://doi.org/10.3998/ark.5550190.0008.f18 DOI: https://doi.org/10.3998/ark.5550190.0008.f18