A Review on Phytoconstituents and Metal Complexes for the Treatment of Tuberculosis

Jump To References Section

Authors

  • Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu. ,IN
  • Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu. ,IN
  • Dr. APJ Abdul Kalam Research Laboratory, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur – 603203, Tamil Nadu. ,IN
  • Professor,College of Pharmacy,SRM Institute of Science and Technology,Tamil Nadu.Mobile: +91 9884910724 ,IN

DOI:

https://doi.org/10.18311/jnr/2023/32121

Keywords:

Iron Complex, Metal Complex, Terpenes, Tuberculosis.

Abstract

Tuberculosis (TB) is an infectious lung disease. Tiny droplets discharged into the air during cough and sneezes by an individual can transmit the bacteria that cause tuberculosis from one person to another. More than one million people die each year as a result of the communicable disease tuberculosis. Anti-TB allopathic drugs have been administered to treat the disease’s symptoms; however, they can produce negative side effects such as hepatitis, hypersensitivity reactions, nausea, vomiting, etc. As a result of the toxicity and side effects of allopathic medicines, the use of herbal medicine is growing in popularity. Since ancient times, medicinal plants have been used to treat illnesses. Alkaloids, coumarins, flavonoids, polyphenols, terpenoids, quinines, and other secondary metabolites that have antibacterial activity are produced by plants and may be helpful in the treatment of tuberculosis. This review aims to explore the possible uses of medicinal herbs and metal complexes with antitubercular capabilities.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-23

How to Cite

Sk Zakki Uddin, Nirupama Panda, Anjana, G. V., & Kathiravan, M. K. (2023). A Review on Phytoconstituents and Metal Complexes for the Treatment of Tuberculosis. Journal of Natural Remedies, 23(1), 1–12. https://doi.org/10.18311/jnr/2023/32121

Issue

Section

Review Articles
Received 2022-12-07
Accepted 2023-02-07
Published 2023-03-23

 

References

Sudre P, Ten Dam G, Kochi A. Tuberculosis: A global overview of the situation today. Bulletin of the World Health Organization. 1992; 70(2):149.

Joseph J, Nagashri K, Janaki GB. Novel metal based antituberculosis agent: Synthesis, characterization, catalytic and pharmacological activities of copper complexes. European Journal of Medicinal Chemistry. 2012; 49:151-63. https:// doi.org/10.1016/j.ejmech.2012.01.006

Rafique S, Idrees M, Nasim A, Akbar H, Athar A. Transition metal complexes as potential therapeutic agents. Biotechnology and Molecular Biology Reviews. 2010; 5(2):38-45.

Rai M, Ingle AP, Birla S, Yadav A, Santos CA. Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology. 2016; 42(5):696-719.

Keri RS, Sasidhar BS, Nagaraja BM, Santos MA. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. European Journal of Medicinal Chemistry. 2015; 100:257-69. https://doi. org/10.1016/j.ejmech.2015.06.017

Dueke-Eze CU, Fasina TM, Oluwalana AE, Familoni OB, Mphalele JM, Onubuogu C. Synthesis and biological evaluation of copper and cobalt complexes of (5-substituted-salicylidene) isonicotinichydrazide derivatives as antitubercular agents. Scientific African. 2020; 9:e00522. https://doi.org/10.1016/j.sciaf.2020.e00522

Winder FG, Denneny JM. Metal-catalysed auto-oxidation of isoniazid. Biochemical Journal. 1959; 73(3):500. https:// doi.org/10.1042/bj0730500

Chinsembu KC. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Tropica. 2016; 153:46-56. https://doi.org/10.1016/j.actatropica.2015.10.004

Gutierrez-Merino C, Lopez-Sanchez C, Lagoa R, K Samhan-Arias A, Bueno C, Garcia-Martinez V. Neuroprotective actions of flavonoids. Current Medicinal Chemistry. 2011; 18(8):1195-212. https://doi. org/10.2174/092986711795029735

Leitao SG, Castro O, Fonseca EN, Juliao LS, Tavares ES, Leo RR, Vieira RC, Oliveira DR, Leitao GG, Martino V, Sulsen V. Screening of Central and South American plant extracts for antimycobacterial activity by the Alamar Blue test. Revista Brasileira de Farmacognosia. 2006; 16:6-11. https:// doi.org/10.1590/S0102-695X2006000100003

Carpenter CD, O’Neill T, Picot N, Johnson JA, Robichaud GA, Webster D, Gray CA. Anti-mycobacterial natural products from the Canadian medicinal plant Juniperus communis. Journal of Ethnopharmacology. 2012; 143(2):695-700. https://doi.org/10.1016/j.jep.2012.07.035

Chinsembu KC. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Tropica. 2016; 153:46-56. https://doi.org/10.1016/j.actatropica.2015.10.004

Sieniawska E, Sawicki R, Swatko-Ossor M, Napiorkowska A, Przekora A, Ginalska G, Augustynowicz-Kopec E. The effect of combining natural terpenes and antituberculous agents against reference and clinical Mycobacterium tuberculosis strains. Molecules. 2018; 23(1):176. https://doi. org/10.3390/molecules23010176

Sieniawska E, Swatko-Ossor M, Sawicki R, SkalickaWoźniak K, Ginalska G. Natural terpenes influence the activity of antibiotics against isolated Mycobacterium tuberculosis. Medical Principles and Practice. 2017; 26(2):108-12. https://doi.org/10.1159/000454680

Moussa AY, Sobhy HA, Eldahshan OA, Singab AN. Caspicaiene: A new kaurene diterpene with anti-tubercular activity from an Aspergillus endophytic isolate in Gleditsia caspia desf. Natural Product Research. 2021; 35(24):5653- 64. https://doi.org/10.1080/14786419.2020.1824222

Umumararungu T, Mukazayire MJ, Mpenda M, Mukanyangezi MF, Nkuranga JB, Mukiza J, Olawode EO. A review of recent advances in anti-tubercular drug development. Indian Journal of Tuberculosis. 2020; 67(4):539-59. https://doi.org/10.1016/j.ijtb.2020.07.017

Bollikolla HB, Tyagi R, Gokada MR, Anandam R, Kasthuri JK, Alam MM, Mannam KM. Flavones as Important Scaffolds for Anticancer, Antioxidant and Anti-Tubercular Activities: An Overview of Reports 2015–2020. Moscow University Chemistry Bulletin. 2022; 77(5):269-85. https:// doi.org/10.3103/S0027131422050042

Banci L, Sigel A, Sigel H, Sigel RK. Metallomics and the cell. Metal Ions in Life Sciences.

Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. Journal of Proteome Research. 2006; 5(11):3173-8. https://doi.org/10.1021/pr0603699

Kusalik A, Bickis M, Lewis C, Li Y, Lucchese G, Marincola FM, Kanduc D. Widespread and ample peptide overlapping between HCV and Homo sapiens proteomes. Peptides. 2007; 28(6):1260-7. https://doi.org/10.1016/j.peptides.2007.04.001

King JV, Liang WG, Scherpelz KP, Schilling AB, Meredith SC, Tang WJ. Molecular basis of substrate recognition and degradation by human presequence protease. Structure. 2014; 22(7):996-1007. https://doi.org/10.1016/j. str.2014.05.003

Rawlings ND, Barrett AJ. Evolutionary families of metallopeptidases. In Methods in enzymology. Academic Press. 1995; l(248):183-228. https://doi.org/10.1016/0076- 6879(95)48015-3

Minde DP, Maurice MM, Rüdiger SG. Determining biophysical protein stability in lysates by a fast proteolysis assay, FASTpp.

Thomas NV, Kim SK. Metalloproteinase inhibitors: status and scope from marine organisms. Biochemistry Research International. 2010; 2010. https://doi. org/10.1155/2010/845975

Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiological Reviews. 2005; 85(1):1-31. https:// doi.org/10.1152/physrev.00048.2003

Shah PK. Inflammation, metalloproteinases, and increased proteolysis: An emerging pathophysiological paradigm in aortic aneurysm. Circulation. 1997; 96(7):2115-7. https:// doi.org/10.1161/01.CIR.96.7.2115

Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circulation Research. 2003; 92(8):827-39. https://doi.org/10.1161/01.RES.0000070112.80711.3D

Hideaki N. Matrix metalloproteinases. Journal of Biological Chemistry. 1999; 274(31):21491-4. https://doi.org/10.1074/ jbc.274.31.21491

Hayashidani S, Tsutsui H, Ikeuchi M, Shiomi T, Matsusaka H, Kubota T, Imanaka-Yoshida K, Itoh T, Takeshita A. Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. American Journal of Physiology-Heart and Circulatory Physiology. 2003; 285(3):H1229-35. https://doi. org/10.1152/ajpheart.00207.2003

Matsusaka H, Ide T, Matsushima S, Ikeuchi M, Kubota T, Sunagawa K, Kinugawa S, Tsutsui H. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload. Hypertension. 2006; 47(4):711-7. https://doi.org/10.1161/01. HYP.0000208840.30778.00

Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nature medicine. 1999; 5(10):1135-42. https://doi. org/10.1038/13459

Alessio E, Editor. Bioinorganic medicinal chemistry. John Wiley and Sons. 2011. https://doi. org/10.1002/9783527633104

Barry NP, Sadler PJ. Exploration of the medical periodic table: Towards new targets. Chemical Communications. 2013; 49(45):5106-31. https://doi.org/10.1039/c3cc41143e

Bruijnincx PC, Sadler PJ. New trends for metal complexes with anticancer activity. Current Opinion in Chemical Biology. 2008; 12(2):197-206. https://doi.org/10.1016/j. cbpa.2007.11.013

Gasser G. Metal complexes and medicine: A successful combination. Chimia. 2015; 69(7-8):442. https://doi. org/10.2533/chimia.2015.442

Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chemical Reviews. 2016; 116(5):3436-86. https://doi.org/10.1021/acs. chemrev.5b00597

Shingnapurkar D, Dandawate P, Anson CE, Powell AK, Afrasiabi Z, Sinn E, Pandit S, Swamy KV, Franzblau S, Padhye S. Synthesis and characterization of pyruvate–isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorganic and Medicinal Chemistry Letters. 2012; 22(9):3172-6. https://doi.org/10.1016/j.bmcl.2012.03.047

Silva PB, Souza PC, Calixto GM, Lopes ED, Frem RC, Netto AV, Mauro AE, Pavan FR, Chorilli M. In vitro activity of copper (II) complexes, loaded or unloaded into a nanostructured lipid system, against Mycobacterium tuberculosis. International Journal of Molecular Sciences. 2016; 17(5):745. https://doi.org/10.3390/ijms17050745

Firmino GS, de Souza MV, Pessoa C, Lourenco M, Resende JA, Lessa JA. Synthesis and evaluation of copper (II) complexes with isoniazid-derived hydrazones as anticancer and antitubercular agents. BioMetals. 2016; 29(6):953-63. https://doi.org/10.1007/s10534-016-9968-7.

Sato MR, Oshiro Junior JA, Machado RT, de Souza PC, Campos DL, Pavan FR, da Silva PB, Chorilli M. Nanostructured lipid carriers for incorporation of copper (II) complexes to be used against Mycobacterium tuberculosis. Drug Design, Development and Therapy. 2017; 2017(11):909-21. https://doi.org/10.2147/DDDT.S127048

Barbosa AR, Caleffi-Ferracioli KR, Leite CQ, GarciaRamos JC, Toledano-Magana Y, Ruiz-Azuara L, Siqueira VL, Pavan FR, Cardoso RF. Potential of Casiopeínas® copper complexes and antituberculosis drug combination against Mycobacterium tuberculosis. Chemotherapy. 2016; 61(5):249-55. https://doi.org/10.1159/000443496

Belwal S, Kariveda S, Ramagiri S. Study on Synthesis, Characterization and Antituberculosis Activity of Biologically Nanostructured Zinc and Titanium Metal Compounds. New Innovations in Chemistry and Biochemistry. 2021; 5:60-70. https://doi.org/10.9734/bpi/ nicb/v5/14502D

Hadda TB, Akkurt M, Baba MF, Daoudi M, Bennani B, Kerbal A, Chohan ZH. Anti-tubercular activity of ruthenium (II) complexes with polypyridines. Journal of Enzyme Inhibition and Medicinal Chemistry. 2009; 24(2):457-63. https://doi.org/10.1080/14756360802188628

Singh R, Nawale L, Arkile M, Wadhwani S, Shedbalkar U, Chopade S, Sarkar D, Chopade BA. Phytogenic silver, gold, and bimetallic nanoparticles as novel antitubercular agents. International Journal of Nanomedicine. 2016; 11:1889. https://doi.org/10.2147/IJN.S102488

Tarallo MB, Urquiola C, Monge A, Costa BP, Ribeiro RR, Costa-Filho AJ, Mercader RC, Pavan FR, Leite CQ, Torre MH, Gambino D. Design of novel iron compounds as potential therapeutic agents against tuberculosis. Journal of Inorganic Biochemistry. 2010; 104(11):1164-70. https://doi. org/10.1016/j.jinorgbio.2010.07.005

Savic-Gajic IM, Savić IM. Drug design strategies with metal-hydroxyquinoline complexes. Expert Opinion on Drug Discovery. 2020; 15(3):383-90. https://doi.org/10.108 0/17460441.2020.1702964

Most read articles by the same author(s)