Alpha-amylase and Alpha-glucosidase Inhibitory Activities of Philippine Indigenous Medicinal Plants

Jump To References Section

Authors

  • Tuklas Lunas Development Centre, Visayas State University, Baybay City, Visca, Leyte – 6521 ,PH
  • Tuklas Lunas Development Centre, Visayas State University, Baybay City, Visca, Leyte – 6521 ,PH
  • Advanced Research and Innovation Centre, Visayas State University, Visca, Baybay City, Leyte – 6521 ,PH
  • Tuklas Lunas Development Centre, Visayas State University, Baybay City, Visca, Leyte – 6521 ,PH
  • Advanced Research and Innovation Centre, Visayas State University, Visca, Baybay City, Leyte – 6521 ,PH

DOI:

https://doi.org/10.18311/jnr/2024/29845

Keywords:

Alpha-amylase, Alpha-glucosidase, Diabetes, Medicinal Plants

Abstract

In the Philippines, medicinal plants still provide the first line of therapeutic remedies and their reported efficacy in traditional treatments provides an opportunity for drug discovery and development. The study aimed to evaluate in vitro commonly used Philippine medicinal plants for their alpha-amylase and alpha-glucosidase inhibitory activities as potential sources of antidiabetic agents. The study emphasised the inhibitory activities of 54 medicinal plants against α-amylase and α-glucosidase enzymes. The findings revealed 7 medicinal plants with the highest alpha-glucosidase inhibitory activity of ≥ 50% and 3 with alpha-amylase inhibitory activity of ≥ 20%. Ethyl acetate extract of Cycas sp. exhibited the highest α-glucosidase inhibitory activity with 83.87% ± 1.52 followed by the aqueous extract of cf. Calyptranthera sp. With 82.07% ± 0.14 with Acarbose as the reference standard (99.71% ± 0.63) at 10µg/mL (w/v) concentration. For the alpha-amylase inhibitory assay, the highest bioactivity was observed in ethyl acetate extract of Curcuma longa L. (39.44% ± 1.56) with Acarbose as the reference standard (51.59% ± 0.98) at 10µg/mL (w/v) concentration. These findings suggest the potential of the above-mentioned plants as sources of alpha-amylase and alpha-glucosidase inhibitors that may be used as antidiabetic agents.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-04-01

How to Cite

Tulin, E. E., Atok, J. J. D., Tulin, A. B., Vergara, A. J. S., & Loreto, M. T. P. (2024). Alpha-amylase and Alpha-glucosidase Inhibitory Activities of Philippine Indigenous Medicinal Plants. Journal of Natural Remedies, 24(4), 877–884. https://doi.org/10.18311/jnr/2024/29845

Issue

Section

Short Communication
Received 2022-03-25
Accepted 2023-09-19
Published 2024-04-01

 

References

Ahmad LA, Crandall JP. Type 2 diabetes prevention: A review. Clin iabetes. 2010; 28(2):53-9. Available from: https://diabetesjournals.org/clinical/article/28/2/53/31277/Type-2-Diabetes-Prevention-A-Review https://doi.org/10.2337/diaclin.28.2.53

Mohan V, Venkatraman JV, Pradeepa R. Epidemiology of cardiovascular disease in type 2 diabetes: The Indian scenario. J Diabetes Sci Technol. 2010; 4(1):158-70. Available from: http://journals.sagepub.com/doi/10.1177/193229681000400121 https://doi.org/10.1177/193229681000400121 PMid:20167181 PMCid: PMC2825638. 3.

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019; 157:107843. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168822719312306 https://doi.org/10.1016/j.diabres.2019.107843 PMid:31518657.

Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) (Internet). 2017; p. 8. Available from: http://journal.frontiersin.org/article/10.3389/fendo.2017.00006/full https://doiorg/10.3389/fendo.2017.00006 PMid:28167928 PMCid: PMC5256065.

Ma J-T, Li D-W, Liu J-K, He J. Advances in research on chemical constituents and their biological activities of the Genus Actinidia. Nat Products Bioprospect. 2021; 11(6):573-609. Available from: https://link.springer.com/10.1007/s13659-021-00319-8 https://doi.org/10.1007/s13659-021-00319-8 PMid:34595735 PMCid: PMC8599787.

Barcelona J, Nickrent D, Lafrankie J, Callado JR, Pelser P. Co’s Digital Flora of the Philippines: plant identification and conservation through cybertaxonomy. Philippine Journal of Science. 2013; 142:57-67. Available from: http://philjournalsci.dost.gov.ph/39-vol-142-no-3-special-issue-2013/757-co-s-digital-flora-of-the-philippines-plant-identification-and-conservation-through-cybertaxonomy

Sasidharan S, Chen Y, Saravanan D, Sundram K, Latha L. Extraction, isolation and characterisation of bioactive compounds from plants’ extracts. African J Tradit Complement Altern Med. 2010; 8(1). Available from: http://www.ajol.info/index.php/ajtcam/article/view/60483 https://doi.org/10.4314/ajtcam.v8i1.60483

Sorokina M, Steinbeck C. Review on natural products databases: Where to find data in 2020. J Cheminform. 2020; 12(1):20. Available from: https://jcheminf.biomedcentral. com/articles/10.1186/s13321-020-00424-9 https://doi.org/10.1186/s13321-020-00424-9 PMid:33431011 PMCid: PMC7118820.

Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016; 79(3):629-61. Available from: https://pubs.acs.org/doi/10.1021/acs.jnatprod.5b01055 https://doi.org/10.1021/acs.jnatprod.5b01055 PMid:26852623.

Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Yu AI, Mahboob T, et al. Recommended medicinal plants as a source of natural products: A review. Digit Chinese Med. 2018; 1(2):131-42. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589377719300187 https://doi.org/10.1016/S2589-3777(19)30018-7

Patel D, Prasad S, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed . 2012; 2(4):320-30. Available from: http://linkinghub.elsevier.com/retrieve/pii/S222116911260032X https://doi.org/10.1016/S2221-1691(12)60032-X PMid:23569923.

Ali H, Houghton PJ, Soumyanath A. α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. J Ethnopharmacol. 2006; 107(3):449-55. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378874106001863 https://doi.org/10.1016/j.jep.2006.04.004 PMid:16678367.

Lankatillake C, Luo S, Flavel M, Lenon GB, Gill H, Huynh T, et al. Screening natural product extracts for potential enzyme inhibitors: Protocols and the standardisation of the usage of blanks in α-amylase, α-glucosidase and lipase assays. Plant Methods. 2021; 17(1):3. Available from: https://plantmethods.biomedcentral.com/articles/10.1186/s13007-020-00702-5 https://doi.org/10.1186/s13007-020-00702-5 PMid:33407662 PMCid: PMC7789656.

Holdgate GA, Meek TD, Grimley RL. Mechanistic enzymology in drug discovery: A fresh perspective. Nat Rev Drug Discov. 2018; 17(2):115-32. Available from: http://www.nature.com/articles/nrd.2017.219 https://doi.org/10.1038/nrd.2017.219 PMid:29192286.

Yang C-Y, Yen Y-Y, Hung K-C, Hsu S-W, Lan S-J, Lin H-C. Inhibitory effects of pu-erh tea on alpha glucosidase and alpha amylase: A systemic review. Nutr Diabetes. 2019; 9(1):23. Available from: http://www.nature.com/articles/s41387-019-0092-y https://doi.org/10.1038/s41387-019-0092-y PMid:31455758 PMCid: PMC6712024.

Anders L, Hill K, Stanberg L. The genus Cycas (Cycadaceae) in the Philippines. Telopea (Internet). 2008; 119-45. Available from: http://plantnet.rbgsyd.nsw.gov. au/emuwebnswlive/objects/common/webmedia.php?irn=51957&reftable=ebibliography https://doi.org/10.7751/telopea20085805

Laishram S, Sheikh Y, Moirangthem DS, Deb L, Pal BC, Talukdar NC, et al. Antidiabetic molecules from Cycas pectinata Griff. traditionally used by the Maiba-Maibi. Phytomedicine. 2015; 22(1):23-6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0944711314003626 https://doi.org/10.1016/j.phymed.2014.10.007 PMid:25636866.

Barroso J, Lacanilao D, Sac R, II R. Antidiabetic effects of Cycas riuminiana leaf extracts on alloxan-induced diabetic ICR mice (Mus musculus L.). Natl J Physiol Pharm Pharmacol. 2017; p.1. Available from: http://www.ejmanager.com/fulltextpdf.php?mno=275162 https://doi.org/10.5455/njppp.2017.7.0831714092017

Tung BT, Nham DT, Hai NT, Thu DK. Curcuma longa, the polyphenolic curcumin compound and pharmacological effects on the liver. In: Dietary interventions in liver disease. Elsevier. 2019; p. 125-34. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128144664000100 https://doi.org/10.1016/B978-0-12-814466-4.00010-0

Itokawa H, Morris-Natschke SL, Akiyama T, Lee K-H. Plant-derived natural product research aimed at new drug discovery. J Nat Med. 2008; 62(3):263-80. Available from: http://link.springer.com/10.1007/s11418-008-0246-z https://doi.org/10.1007/s11418-008-0246-z PMid:18425 692.

Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 2003; 23(1A):363-98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12680238 PMID: 12680238.

Bahmani M, Golshahi H, Saki K, Rafieian-Kopaei M, Delfan B, Mohammadi T. Medicinal plants and secondary metabolites for diabetes mellitus control. Asian Pacific J Trop Dis. 2014; 4:S687-92. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2222180814607088 https://doi.org/10.1016/S2222-1808(14)60708-8

Nokhala A, Siddiqui MJ, Ahmed QU, Ahamad Bustamam MS, Zakaria ZA. Investigation of α-Glucosidase inhibitory metabolites from Tetracera scandens Leaves by GC-MS metabolite profiling and docking studies. Biomolecules. 2020; 10(2):287. Available from: https://www.mdpi.com/2218-273X/10/2/287 https://doi.org/10.3390/biom10020287 PMid:32059529 PMCid: PMC7072363.

Murugesu S, Ibrahim Z, Ahmed QU, Uzir BF, Nik Yusoff NI, Perumal V, et al. Identification of α-glucosidase inhibitors from Clinacanthus nutans leaf extract using liquid chromatography-mass spectrometry-based metabolomics and protein-ligand interaction with molecular docking. J Pharm Anal. 2019; 9(2):91-9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2095177918304659 https://doi.org/10.1016/j.jpha.2018.11.001 PMid:31011465 PMCid: PMC6460329.