Chemopreventive Potential of Phytoestrogens on Hormone-Sensitive Cancer - An Updated Review

Jump To References Section

Authors

  • Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris - 643001, Tamil Nadu. ,IN
  • Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris - 643001, Tamil Nadu. ,IN
  • 3 Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris - 643001, Tamil Nadu. ,IN

DOI:

https://doi.org/10.18311/jnr/2023/31187

Keywords:

Breast Cancer, Chemoprevention, Endometrial Cancer, Ovarian Cancer, Phytoestrogens.
Pharmacognosy, Phytoestrogens

Abstract

Hormone-dependent cancers contribute to the majority of cancer deaths in women. Treatment options for hormonal cancer such as breast, endometrial, prostate, and ovarian cancer aim at inhibiting key signalling pathways and hormones responsible for cell proliferation. Hormonal therapies in the long run cause musculoskeletal disorders, Disease reoccurrence, and drug resistance. There is a need for new alternative therapies to prevent and treat hormonal carcinomas. Phytoestrogens, a naturally occurring polyphenol have potent effects on hormonal cancers due to their estrogenic effects. Evidence suggests that phytoestrogens exert their apoptotic potential by interfering with steroidogenesis, gene expressions, and down-regulation of Protein Tyrosine Kinases, Matrix Metalloproteinases. They also act as topo-poisons. This review explains the key mechanisms of phytoestrogens in inhibiting cell proliferation in hormonal cancers by evidence from recent clinical studies, meta-analyses, and cohort study reports. Phytoestrogens have multi-target potential with both preventive and treatment properties on cancer cell lines. Combination therapies with phytoestrogens are more beneficial in controlling cell progression. Hence further research is required to explore their epigenetic properties on tumour suppressor genes which stay an important target in cancer research.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-23

How to Cite

Subramani, S., Selvaraj, J., & Natarajan, J. (2023). Chemopreventive Potential of Phytoestrogens on Hormone-Sensitive Cancer - An Updated Review. Journal of Natural Remedies, 23(1), 23–33. https://doi.org/10.18311/jnr/2023/31187

Issue

Section

Short Review
Received 2022-09-03
Accepted 2022-12-12
Published 2023-03-23

 

References

Korde LA, Wu AH, Fears T, Nomura AMY, West DW, Kolonel LN, Pike MC, Hoover RN, Ziegler RG. Childhood Soy Intake and Breast Cancer Risk in Asian American Women. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2009; 18(4):1050-1059. https://doi. org/10.1158/1055-9965.EPI-08-0405 DOI: https://doi.org/10.1158/1055-9965.EPI-08-0405

Ronghe A, Chatterjee A, Singh B, Dandawate P, Murphy L, Bhat NK, Padhye S, Bhat HK. Differential Regulation of Estrogen Receptors α and β by 4-(E)-{(4- Hydroxyphenylimino)-Methylbenzene,1,2-Diol}, a Novel Resveratrol Analog. J. Steroid Biochem. Mol. Biol. 2014; 144:500-512. https://doi.org/10.1016/j. jsbmb.2014.09.015 DOI: https://doi.org/10.1016/j.jsbmb.2014.09.015

He J, Wang S, Zhou M, Yu W, Zhang Y, He X. Phytoestrogens and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies. World J. Surg. Oncol. 2015; 13(1):231. https://doi.org/10.1186/ s12957-015-0648-9 DOI: https://doi.org/10.1186/s12957-015-0648-9

Horn-Ross P L, John EM, Canchola AJ, Stewart SL, Lee MM. Phytoestrogen Intake and Endometrial Cancer Risk. JNCI J. Natl. Cancer Inst. 2003; 95(15):1158- 1164. https://doi.org/10.1093/jnci/djg015 DOI: https://doi.org/10.1093/jnci/djg015

Rice S, Whitehead S.A. Phytoestrogens and Breast Cancer–Promoters or Protectors? Endocr. Relat. Cancer. 2006; 13(4):995-1015. https://doi. org/10.1677/erc.1.01159

Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front. Pharmacol. 2021; 12:772510. https://doi.org/10.3389/ fphar.2021.772510 DOI: https://doi.org/10.3389/fphar.2021.772510

Pottier C, Fresnais M, Gilon M, Jerusalem G, Longuespee R, Sounni NE. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers. 2020; 12(3):731. https://doi. org/10.3390/cancers12030731 DOI: https://doi.org/10.3390/cancers12030731

Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC. Receptor Tyrosine Kinases (RTKs) in Breast Cancer: Signaling, Therapeutic Implications and Challenges. Mol. Cancer. 2018; 17(1):34. https:// doi.org/10.1186/s12943-018-0797-x DOI: https://doi.org/10.1186/s12943-018-0797-x

Nynca A, Nynca J, Wąsowska B, Kolesarova A, Kołomycka A, Ciereszko RE. Effects of the Phytoestrogen, Genistein, and Protein Tyrosine Kinase Inhibitor–Dependent Mechanisms on Steroidogenesis and Estrogen Receptor Expression in Porcine Granulosa Cells of Medium Follicles. Domest. Anim. Endocrinol. 2013; 44(1):10-18. https:// doi.org/10.1016/j.domaniend.2012.07.002 DOI: https://doi.org/10.1016/j.domaniend.2012.07.002

Pratheeshkumar P, Sreekala C, Zhang Z, Budhraja A, Ding S, Son Y-O, Wang X, Hitron A, Hyun-Jung K, Wang L, Lee J-C, Shi X. Cancer Prevention with Promising Natural Products: Mechanisms of Action and Molecular Targets. Anticancer Agents Med. Chem. 2012; 12(10):1159-1184. https://doi. org/10.2174/187152012803833035 DOI: https://doi.org/10.2174/187152012803833035

Kang NJ, Lee KW, Rogozin EA, Cho Y-Y, Heo Y-S, Bode AM, Lee HJ, Dong Z. Equol, a Metabolite of the Soybean Isoflavone Daidzein, Inhibits Neoplastic Cell Transformation by Targeting the MEK/ERK/ P90RSK/Activator Protein-1 Pathway. J. Biol. Chem. 2007; 282(45):32856-32866. https://doi.org/10.1074/ jbc.M701459200 DOI: https://doi.org/10.1074/jbc.M701459200

Polier G, Ding J, Konkimalla BV, Eick D, Ribeiro N, Kohler R, Giaisi M, Efferth T, Desaubry L, Krammer PH, Li-Weber M. Wogonin and Related Natural Flavones Are Inhibitors of CDK9 That Induce Apoptosis in Cancer Cells by Transcriptional Suppression of Mcl-1. Cell Death Dis. 2011; 2(7):e182-e182. https://doi. org/10.1038/cddis.2011.66 DOI: https://doi.org/10.1038/cddis.2011.66

Holder S, Zemskova M, Zhang C, Tabrizizad M, Bremer R, Neidigh JW, Lilly MB. Characterization of a Potent and Selective Small-Molecule Inhibitor of the PIM1 Kinase. Mol. Cancer Ther. 2007; 6(1):163-172. https://doi.org/10.1158/1535-7163.MCT-06-0397 DOI: https://doi.org/10.1158/1535-7163.MCT-06-0397

Balakrishnan L, Bambara RA. Flap Endonuclease 1. Annu. Rev. Biochem. 2013; 82(1):119-138. https://doi. org/10.1146/annurev-biochem-072511-122603 DOI: https://doi.org/10.1146/annurev-biochem-072511-122603

Balian A, Hernandez FJ. Nucleases as Molecular Targets for Cancer Diagnosis. Biomark. Res. 2021; 9(1):86. https://doi.org/10.1186/s40364-021-00342-4 DOI: https://doi.org/10.1186/s40364-021-00342-4

Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an Emerging Therapeutic Target for Various Human Diseases: Phytochemical Modulation of Its Functions. Exp. Mol. Med. 2014; 46(7):e106-e106. https://doi.org/10.1038/ emm.2014.42 DOI: https://doi.org/10.1038/emm.2014.42

Chen B, Zhang Y, Wang Y, Rao J, Jiang X, Xu Z. Curcumin Inhibits Proliferation of Breast Cancer Cells through Nrf2-Mediated down-Regulation of Fen1 Expression. J. Steroid Biochem. Mol. Biol. 2014; 143:11-18. https://doi.org/10.1016/j. jsbmb.2014.01.009 DOI: https://doi.org/10.1016/j.jsbmb.2014.01.009

Rice S, Whitehead SA. Phytoestrogens and Breast Cancer–Promoters or Protectors? Endocr. Relat. Cancer. 2006; 13(4):995-1015. https://doi. org/10.1677/erc.1.01159 DOI: https://doi.org/10.1677/erc.1.01159

Vann KR, Oviatt AA, Osheroff N. Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors. Biochemistry. 2021; 60(21):1630- 1641. https://doi.org/10.1021/acs.biochem.1c00240 DOI: https://doi.org/10.1021/acs.biochem.1c00240

Bandele OJ, Osheroff N. Bioflavonoids as Poisons of Human Topoisomerase IIα and IIβ. Biochemistry. 2007; 46(20):6097-6108. https://doi.org/10.1021/ bi7000664 DOI: https://doi.org/10.1021/bi7000664

Basso E, Fiore M, Leone S, Degrassi F, Cozzi R. Effects of Resveratrol on Topoisomerase II-Activity: Induction of Micronuclei and Inhibition of Chromosome Segregation in CHO-K1 Cells. Mutagenesis. 2013; 28(3):243-248. https://doi. org/10.1093/mutage/ges067 DOI: https://doi.org/10.1093/mutage/ges067

Karsli-Ceppioglu S, Ngollo M, Judes G, Penault-LLorca F, Bignon Y-J, Guy L, Bernard-Gallon D. The Role of Soy Phytoestrogens on Genetic and Epigenetic Mechanisms of Prostate Cancer. In The Enzymes. Elsevier. 2015; 37:193-221. https://doi.org/10.1016/ bs.enz.2015.05.004 DOI: https://doi.org/10.1016/bs.enz.2015.05.004

Adjakly M, Bosviel R, Rabiau N, Boiteux J-P, Bignon Y-J, Guy L, Bernard-Gallon D. DNA Methylation and Soy Phytoestrogens: Quantitative Study in DU-145 and PC-3 Human Prostate Cancer Cell Lines. Epigenomics. 2011; 3(6):795-803. https://doi. org/10.2217/epi.11.103 DOI: https://doi.org/10.2217/epi.11.103

Mayo B, Vazquez L, Florez AB. Equol: A Bacterial Metabolite from the Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients. 2019; 11(9):2231. https://doi.org/10.3390/nu11092231 DOI: https://doi.org/10.3390/nu11092231

Phillip CJ, Giardina CK, Bilir B, Cutler DJ, Lai Y-H, Kucuk O, Moreno CS. Genistein Cooperates with the Histone Deacetylase Inhibitor Vorinostat to Induce Cell Death in Prostate Cancer Cells. BMC Cancer. 2012; 12(1):145. https://doi.org/10.1186/1471-2407- 12-145 DOI: https://doi.org/10.1186/1471-2407-12-145

Hsieh C-J, Hsu Y-L, Huang Y-F, Tsai E-M. Molecular Mechanisms of Anticancer Effects of Phytoestrogens in Breast Cancer. Curr. Protein Pept. Sci. 2018; 19(3). https://doi.org/10.2174/138920371 8666170111121255 DOI: https://doi.org/10.2174/1389203718666170111121255

Waite KA, Sinden MR, Eng C. Phytoestrogen Exposure Elevates PTEN Levels. 7. 28. Phytoestrogens Regulate MRNA and Protein Levels of Guanine Nucleotide-Binding Protein, Beta-1 Subunit (GNB1) in MCF-7 Cells. J. Cell. Physiol. 11.

Yasin HK, Taylor AH, Ayakannu T. A Narrative Review of the Role of Diet and Lifestyle Factors in the Development and Prevention of Endometrial Cancer. Cancers. 2021; 13(9):2149. https://doi.org/10.3390/ cancers13092149 DOI: https://doi.org/10.3390/cancers13092149

Zhong X, Ge J, Chen S, Xiong Y, Ma S, Chen Q. Association between Dietary Isoflavones in Soy and Legumes and Endometrial Cancer: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2018; 118(4):637-651. https://doi.org/10.1016/j. jand.2016.09.036 DOI: https://doi.org/10.1016/j.jand.2016.09.036

Rudzitis-Auth J, Menger MD, Laschke MW. Resveratrol Is a Potent Inhibitor of Vascularization and Cell Proliferation in Experimental Endometriosis. Hum. Reprod. 2013; 28(5):1339-1347. https://doi. org/10.1093/humrep/det031 DOI: https://doi.org/10.1093/humrep/det031

Kim J, Woo J, Kim H, Oh M, Jang D, Choi J. Anti‐Endometriotic Effects of Pueraria Flower Extract in Human Endometriotic Cells and Mice. Nutrients. 2017; 9(3):212. https://doi.org/10.3390/nu9030212 DOI: https://doi.org/10.3390/nu9030212

Park S, Lim W, Bazer FW, Song G. Naringenin Induces Mitochondria-Mediated Apoptosis and Endoplasmic Reticulum Stress by Regulating MAPK and AKT Signal Transduction Pathways in Endometriosis Cells. MHR Basic Sci. Reprod. Med. 2017; 23(12):842- 854. https://doi.org/10.1093/molehr/gax057 DOI: https://doi.org/10.1093/molehr/gax057

Arablou T. Delbandi A, Khodaverdi S, Arefi S, Kolahdouz‐Mohammadi R, Heidari S, Mohammadi T, Aryaeian N. Resveratrol Reduces the Expression of Insulin‐like Growth Factor‐1 and Hepatocyte Growth Factor in Stromal Cells of Women with Endometriosis Compared with Nonendometriotic Women. Phytother. Res. 2019; 33(4):1044-1054. https://doi.org/10.1002/ptr.6298 DOI: https://doi.org/10.1002/ptr.6298

Bartiromo L, Schimberni M, Villanacci R, Ottolina J, Dolci C, Salmeri N, Vigano P, Candiani M. Endometriosis and Phytoestrogens: Friends or Foes? A Systematic Review. Nutrients. 2021; 13(8):2532. https://doi.org/10.3390/nu13082532 DOI: https://doi.org/10.3390/nu13082532

Zhou Y, Liu X. The Role of Estrogen Receptor Beta in Breast Cancer. Biomark. Res. 2020; 8(1):39. https:// doi.org/10.1186/s40364-020-00223-2 DOI: https://doi.org/10.1186/s40364-020-00223-2

Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen Receptors Alpha (ERα) and Beta (ERβ): Subtype-Selective Ligands and Clinical Potential. Steroids. 2014; 9:13-29. https://doi.org/10.1016/j.steroids.2014.06.012 DOI: https://doi.org/10.1016/j.steroids.2014.06.012

Jordan VC, O’Malley BW. Selective Estrogen-Receptor Modulators and Antihormonal Resistance in Breast Cancer. J. Clin. Oncol. 2007; 25(36):5815- 5824. https://doi.org/10.1200/JCO.2007.11.3886 DOI: https://doi.org/10.1200/JCO.2007.11.3886

Kala R, Shah HN, Martin SL, Tollefsbol TO. Epigenetic-Based Combinatorial Resveratrol and Pterostilbene Alters DNA Damage Response by Affecting SIRT1 and DNMT Enzyme Expression, Including SIRT1- Dependent γ-H2AX and Telomerase Regulation in Triple-Negative Breast Cancer. BMC Cancer. 2015; 15:672. https://doi.org/10.1186/s12885-015-1693-z DOI: https://doi.org/10.1186/s12885-015-1693-z

Zhao T-T, Jin F, Li J-G, Xu Y-Y, Dong H-T, Liu Q, Xing P, Zhu G-L, Xu H, Miao Z-F. Dietary Isoflavones or Isoflavone-Rich Food Intake and Breast Cancer Risk: A Meta-Analysis of Prospective Cohort Studies. Clin. Nutr. 2019; 38(1):136-145. https://doi.org/10.1016/j. clnu.2017.12.006 DOI: https://doi.org/10.1016/j.clnu.2017.12.006

Yang Y-CSH, Li Z-L, Huang T-Y, Su K-W, Lin C-Y, Huang C-H, Chen H-Y, Lu M-C, Huang H-M, Lee S-Y, Whang-Peng J, Lin H-Y, Davis PJ, Wang K. Effect of Estrogen on Heteronemin-Induced Anti-Proliferative Effect in Breast Cancer Cells With Different Estrogen Receptor Status. Front. Cell Dev. Biol. 2021; 9:688607. https://doi.org/10.3389/fcell.2021.688607 DOI: https://doi.org/10.3389/fcell.2021.688607

Shirabe R, Saito E, Sawada N, Ishihara J, Takachi R, Abe SK, Shimazu T, Yamaji T, Goto A, Iwasaki M,Inoue M, Tsugane S. JPHC Study Group. Fermented and Nonfermented Soy Foods and the Risk of Breast Cancer in a Japanese Population‐based Cohort Study. Cancer Med. 2021; 10(2):757-771. https://doi.org/10.1002/cam4.3677 DOI: https://doi.org/10.1002/cam4.3677

Zhang H-W, Hu J-J, Fu R-Q, Liu X, Zhang Y-H, Li J, Liu L, Li Y-N, Deng Q, Luo Q-S, Ouyang Q, Gao N. Flavonoids Inhibit Cell Proliferation and Induce Apoptosis and Autophagy through Downregulation of PI3Kγ Mediated PI3K/AKT/MTOR/P70S6K/ULK Signaling Pathway in Human Breast Cancer Cells. Sci. Rep. 2018; 8(1):11255. https://doi.org/10.1038/ s41598-018-29308-7 DOI: https://doi.org/10.1038/s41598-018-29308-7

Nag S, Aggarwal S, Rauthan A, Warrier N. Maintenance Therapy for Newly Diagnosed Epithelial Ovarian Cancer – A Review. J. Ovarian Res. 2022; 15(1):88. https://doi.org/10.1186/s13048-022-01020-1 DOI: https://doi.org/10.1186/s13048-022-01020-1

Chien J, Poole EM. Ovarian Cancer Prevention, Screening, and Early Detection: Report From the 11th Biennial Ovarian Cancer Research Symposium. Int. J. Gynecol. Cancer. 2017; 27:S20-S22. https://doi. org/10.1097/IGC.0000000000001118 DOI: https://doi.org/10.1097/IGC.0000000000001118

Bell SG, Dalton L, McNeish BL; Fang F, Henry NL, Kidwell KM, McLean K. Aromatase Inhibitor Use, Side Effects and Discontinuation Rates in Gynecologic Oncology Patients. Gynecol. Oncol. 2020; 159(2):509- 514. https://doi.org/10.1016/j.ygyno.2020.08.015 DOI: https://doi.org/10.1016/j.ygyno.2020.08.015

Shen F, Weber G. Synergistic Action of Quercetin and Genistein in Human Ovarian Carcinoma Cells. Oncol. Res. 1997; 9(11–12):597-602.

Zhao E. Phytoestrogen Biological Actions on Mammalian Reproductive System and Cancer Growth. Sci. Pharm. 2011; 79(1):1-20. https://doi. org/10.3797/scipharm.1007-15 DOI: https://doi.org/10.3797/scipharm.1007-15

Tanaka T, Kohno H, Tanino M, Yanaida Y. Inhibitory Effects of Estrogenic Compounds, 4-Nonylphenol and Genistein, on 7,12-Dimethylbenz[a]Anthracene-Induced Ovarian Carcinogenesis in Rats. Ecotoxicol. Environ. Saf. 2002; 52(1):38-45. https://doi. org/10.1006/eesa.2002.2159 DOI: https://doi.org/10.1006/eesa.2002.2159

Lim W, Jeong W, Song G. Coumestrol Suppresses Proliferation of ES2 Human Epithelial Ovarian Cancer Cells. J. Endocrinol. 2016; 228(3):149-160. https://doi.org/10.1530/JOE-15-0418 DOI: https://doi.org/10.1530/JOE-15-0418

Eilati E, Hales K, Zhuge Y, Ansenberger Fricano K, Yu R, van Breemen RB, Hales DB. Flaxseed Enriched Diet-Mediated Reduction in Ovarian Cancer Severity Is Correlated to the Reduction of Prostaglandin E2 in Laying Hen Ovaries. Prostaglandins Leukot. Essent. Fatty Acids. 2013; 89(4):179-187. https://doi. org/10.1016/j.plefa.2013.08.001 DOI: https://doi.org/10.1016/j.plefa.2013.08.001

Chhabra G, Singh CK, Ndiaye MA, Fedorowicz S, Molot A, Ahmad N. Prostate Cancer Chemoprevention by Natural Agents: Clinical Evidence and Potential Implications. Cancer Lett. 2018; 422:9-18. https://doi. org/10.1016/j.canlet.2018.02.025 DOI: https://doi.org/10.1016/j.canlet.2018.02.025

Umlauff L, Weber M, Freitag N, Fairman CM, Heidenreich A, Bloch W, Schumann M. Dietary Interventions to Improve Body Composition in Men Treated with Androgen Deprivation Therapy for Prostate Cancer: A Solution for the Growing Problem? Prostate Cancer Prostatic Dis. 2022; 25(2):149-158. https://doi.org/10.1038/s41391-021-00411-7 DOI: https://doi.org/10.1038/s41391-021-00411-7

Zhang Q,Feng H, Qluwakemi B, Wang J, Yao S, Cheng G, Xu H, Qiu H, Zhu L, Yuan M. Phytoestrogens and Risk of Prostate Cancer: An Updated Meta-Analysis of Epidemiologic Studies. Int. J. Food Sci. Nutr. 2017; 68(1):28-42. https://doi.org/10.1080/09637486.2016. 1216525 DOI: https://doi.org/10.1080/09637486.2016.1216525

Hnit SST, Yao M, Xie C, Bi L, Wong M, Liu T, De Souza P, Li Z, Dong Q. Apigenin Impedes Cell Cycle Progression at G2 Phase in Prostate Cancer Cells Discov. Oncol. 2022; 13(1):44. https://doi.org/10.1007/ s12672-022-00505-1 DOI: https://doi.org/10.1007/s12672-022-00505-1

Bilir B, Sharma NV, Lee J, Hammarstrom B, Svindland A, Kucuk O, Moreno CS. Effects of Genistein Supplementation on Genome-wide DNA Methylation and Gene Expression in Patients with Localized Prostate Cancer. Int. J. Oncol. 2017; 51(1):223-234. https://doi.org/10.3892/ijo.2017.4017 DOI: https://doi.org/10.3892/ijo.2017.4017

Azrad M, Vollmer RT, Madden J, Dewhirst M, Polascik TJ, Snyder DC, Ruffin MT, Moul JW, Brenner DE, Demark-Wahnefried W. Flaxseed-Derived Enterolactone Is Inversely Associated with Tumor Cell Proliferation in Men with Localized Prostate Cancer. J. Med. Food. 2013; 16(4):357-360. https:// doi.org/10.1089/jmf.2012.0159 DOI: https://doi.org/10.1089/jmf.2012.0159

Seo Y, Ryu K, Park J, Jeon D, Jo S, Lee HK, Namkung W. Inhibition of ANO1 by Luteolin and Its Cytotoxicity in Human Prostate Cancer PC-3 Cells. PLOS ONE. 2017; 12(3):e0174935. https://doi.org/10.1371/journal.pone.0174935 DOI: https://doi.org/10.1371/journal.pone.0174935

Fontana F, Raimondi M, Marzagalli M, Di Domizio A, Limonta P. Natural Compounds in Prostate Cancer Prevention and Treatment: Mechanisms of Action and Molecular Targets. Cells. 2020; 9(2):E460. https:// doi.org/10.3390/cells9020460 DOI: https://doi.org/10.3390/cells9020460