An Evidence-based Systematic Review of Pleiotropic Potential Health Benefits of Sorghum bicolor Supplement: A Polyphenol-rich Derivative of the Leaf Sheaths of Sorghum Plant

Jump To References Section

Authors

  • Department of Pharmacology and Therapeutics, College of Health Sciences, Olabisi Onabanjo University, Sagamu ,NG
  • Department of Pharmacology, College of Health of Sciences, Delta State University, Abraka ,NG
  • Department of Pathology, University of Cape Town ,ZA
  • Health Forever Product Limited, Lagos ,NG
  • Department of Biochemistry, University of Nigeria, Nsukka ,NG
  • Department of Paediatrics and Community Medicine, University of Manitoba, Winnipeg ,CA
  • Department of Pharmacology, Therapeutics and Toxicology, Lagos State University College of Medicine, Ikeja, Lagos ,NG
  • Department of Physiology, Lagos State University College of Medicine, Ikeja, Lagos ,NG
  • Department of Haematology and Blood Transfusion, Lagos State University College of Medicine, Ikeja, Lagos ,NG
  • Health Forever Product Limited, Lagos ,NG
  • Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan ,NG

DOI:

https://doi.org/10.18311/jnr/2024/33171

Keywords:

Anti-aging, Antioxidant, Anti-inflammatory, Chemoprevention, Immunomodulation, Polyphenolic Constituents, Sorghum bicolor

Abstract

Globally, across different cultures, humans have historically depended largely on medicinal plants for managing diseases that have hitherto threatened their optimal health, survival, and longevity. Evidently, the health-derived benefits of medicinal plants have been strongly attributed to the presence of secondary metabolites, particularly polyphenols. The potential health benefits of the leaf sheaths of the West African variety of Sorghum bicolor-based Jobelyn Supplement (SBJS) have also been ascribed to its high contents of polyphenols. This systematic review seeks to synthetically harmonize findings from various experimental and clinical studies on the health benefits of SBJS in different disease conditions including arthritis, cancer, chronic viral infections, stroke, anaemia, and premature aging. A systematic search was conducted using three primary databases (PubMed, Europe PMC, and Cochrane Library), to identify published articles on therapeutic potentials of SBJS and ethnomedicinal surveys on the application of the West African variety of S. bicolor using the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) standard. The inclusion criteria were experimental and clinical studies conducted on SBJS and West African variety of S. bicolor; while ethnomedicinal surveys were on the therapeutic uses of the West African variety of S. bicolor published in the English language. The review provides valuable information suggesting that SBJS possesses pleiotropic therapeutic potentials in diverse pathological conditions through mechanisms relating to antioxidant, anti-inflammatory, immunomodulatory, chemopreventive, and neuroprotective activities. The review also showed that SBJS contains several bioactive substances with polyvalent pharmacological potentials including modulation of pathological mechanisms involved in the mediation of aging and age-related diseases, such as arthritis, stroke, memory loss and cancer as well as chronic viral infections. Taken together, these findings further suggest the need for more robust studies (including disease-specific clinical trial programs) in order to replicate and validate the prior insights gleaned from previous investigations on SBJS.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-04-01

How to Cite

Adebesin, A., Omogbiya, A. I., Oluwole, O. G., Okubena, O., Asomadu, R. O., Afolabi, M. O. S., Lobo Makanjuola, S. B., Ajonuma, L. C., Dosunmu, A. O., Otitoloju, O., & Umukoro, S. (2024). An Evidence-based Systematic Review of Pleiotropic Potential Health Benefits of <i>Sorghum bicolor</i> Supplement: A Polyphenol-rich Derivative of the Leaf Sheaths of <i>Sorghum</i> Plant. Journal of Natural Remedies, 24(4), 683–702. https://doi.org/10.18311/jnr/2024/33171

Issue

Section

Review Articles
Received 2023-02-28
Accepted 2024-02-05
Published 2024-04-01

 

References

Cragg GM, Newman DJ. Natural products drug discovery in the next millennium. Pharmaceutical Biol. 2001; 39:8-17. https://doi.org/10.1076/phbi.39.s1.8.0009 PMid:21554167

Soejarto DD. Biodiversity prospecting and benefit-sharing: Perspectives from the field. J Ethnopharmacol. 1996; 51:1-15. https://doi.org/10.1016/0378-8741(95) 01345-8 PMid:9213606

Balandrin MF, Kinghorn AD, Farnsworth NR. Plant-derived natural products in drug discovery and development: An overview. In: Kinghorn AD, Balandrin MF editors. Human Medicinal Agents from Plants. Washington DC American Chemical Society; 1993. p. 2-12. https://doi.org/10.1021/bk-1993-0534.ch001

Ellis JM, Reddy P. Effects of Panax ginseng on quality of life. Ann Pharmacother. 2002; 36(3):75-79. https://doi.org/10.1345/aph.1A245 PMid:11895046

Josey ES, Tackett RL. St. John’s wort: A new alternative for depression? Int J Clin Pharm. 1999; 37:111-19.

Aschwanden C. Herbs for health but how safe are they? Bulletin of the World Health Organization. 2001; 79:691-2.

Chen X, Shen J, Xu J, Herald T, Smolensky D, Perumal R, et al. Sorghum phenolic compounds are associated with cell growth inhibition through cell cycle arrest and apoptosis in human hepatocarcinoma and colorectal adenocarcinoma cells. Foods. 2021; 10(5). https://doi.org/10.3390/foods10050993 PMid:34062914 PMCid:PMC8147257

Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K, Mukherjee PK, et al. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related disease. Med Res Rev. 2021; 41:630-703. https://doi.org/10.1002/med.21743 PMid:33103257 PMCid:PMC7756641

Espitia-Hernández P, Mónica L, González C, AscacioValdés JA, Dávila-Medina D, Flores-Naveda A, et al. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties. Crit Rev Food Sci. 2002; 62:2269-80. https://doi.org/10.1080/10408398.2020.1852389 PMid:33280412

Cox S, Noronha L, Herald T, Bean S, Lee SH, Perumal R, et al. Evaluation of ethanol-based extraction conditions of Sorghum bran bioactive compounds with downstream anti-proliferative properties in human cancer cells. Heliyon. 2019; 5. https://doi.org/10.1016/j.heliyon.2019.e01589 PMid:31111105 PMCid:PMC6512580

Duthie GG, Duthie SJ, Kyle JAM. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidant. Nutr Res Rev. 2000; 13:79-106. https://doi.org/10.1079/095442200108729016 PMid: 19087434

Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018; 10. https://doi.org/10.3390/nu10111618 PMid:30400131 PMCid:PMC6266803

Devi PS, Saravanakumar M, Mohandas S. Identification of 3-deoxyanthocyanins from red Sorghum (Sorghum bicolor) bran and its biological properties. Afr J Pure Appl Chem. 2011; 5:181-93.

Adebayo AH, Yakubu OF, Egbung GE, Williams OI, Okubena O. Sub-acute toxicological effects of Jobelyn on pregnant albino rats. American Inst Phy. 2018; 1954. https://doi.org/10.1063/1.5033398

Okubena O, Makanjuola S, Ajonuma LC, Dosunmu A, Umukoro S, Erah PO. The West African Sorghum bicolor leaf sheath extract Jobelyn® and its diverse therapeutic potentials. MOJ Drug Des Dev Ther. 2018; 2:1-10.

Umukoro S, Oghwere EE, Ben-Azu B, Owoeye O, Ajayi AM, Omorogbe O, et al. Jobelyn® ameliorates neurological deficits in rats with ischemic stroke through inhibition of release of pro-inflammatory cytokines and NF-ĸB signaling pathway. Pathophysio. 2018; 26(1):77-88. https://doi.org/10.1016/j.pathophys.2018.10.002 PMid:30413288

Benson KF, Beaman JL, Ou B, Okubena A, Okubena O, Jensen GS. West African Sorghum bicolor leaf sheaths have anti-inflammatory and immune-modulating properties in vitro. J Med Food. 2013; 16:230-8. https://doi.org/10.1089/jmf.2012.0214 Mid:23289787 PMCid:PMC3598435

Woo HJ, Oh LT, Lee JY, Jun DY, Seu MC, Woo KS, et al. Apigeninidin induces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells. Process Biochem. 2012; 47:1861-71. https://doi.org/10.1016/j.procbio.2012.06.012

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Br Med J. 2021; 372. https://doi.org/10.1136/bmj.n71

Okochi VI, Okpuzor J, Okubena MO, Awoyemi AK. The influence of African herbal formular on the haematological parameters of trypanosome infected rats. Afr J Biotechnol. 2003; 2:312-16. https://doi.org/10.5897/AJB2003.000-1064

Awika JM, Rooney LW. Sorghum phytochemicals and their potential impact on human health. Phytochem. 2000; 65:1199-221. https://doi.org/10.1016/j.phytochem.2004.04.001 PMid:15184005

Oyinbo CA, Dare WN, Avwioro OG, Igbigbi PS. Neuroprotective effect of Jobelyn in the hippocampus of alcoholic rat is mediated in part by alterations in GFAP and NF protein expressions. Adv Biol Sci Res. 2015; 9:305-17.

Eniojukan JF, Aina BA. Toxicological profiles of commercial herbal preparation, Jobelyn. Int J Health Res. 2009; 2:369-74. https://doi.org/10.4314/ijhr.v2i4.55438

Erah PO, Asonye CC, Okhamafe AO. Response of Trypanosomabrucei-induced anaemia to a commercial herbal preparation. Afr J Biotech. 2003; 2:307-11. https://doi.org/10.5897/AJB2003.000-1063

Nnaji M. How an African-made dietary supplement promises to revolutionize medical treatment. The African Courier [Internet]. 2016. [cited 2022 Sep 23]. Available from: https://www.theafricancourier.de/news/africa/jobelyn-how-a-nigerian-made-drug-promises-to-mix-up-things-in-medical-treatment/

Paraiso IL, Revel JS, Stevens JF. Potential use of polyphenols in the battle against COVID-19. Curr Opin Food Sci. 2020; 32:149-55. https://doi.org/10.1016/j.cofs.2020.08.004 PMid:32923374 PMCid:PMC7480644

Xu H, Wang E, Chen J, Xiao J, Wan M. Neuroprotective phytochemicals in experimental ischemic stroke: Mechanisms and potential clinical applications. Oxid Med Cell Longev. 2021. https://doi.org/10.1155/2021/6687386 PMid:34007405 PMCid:PMC8102108

Drug Dictionary of National Cancer Institute, USA. Sorghum bicolor supplement [Internet]. n.d. [cited 2023 Feb 12]. Available from: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/sorghum-bicolor-supplement

Makanjuola SBL, Ogundaini AO, Ajonuma LC, Dosunmu A. Apigenin and apigeninidin isolates from the Sorghum bicolor leaf targets inflammation via cyclooxygenase‐2 and prostaglandin‐E2 blockade. Clin Transplant. 2018; 21:1487‐95. https://doi.org/10.1111/1756-185X.13355 PMid:30146750

Kim J, Fann DY, Seet RC, Jo DG, Mattson MP, Arumugam TV. Phytochemicals in ischemic stroke. Neuromolecular Med. 2016; 18:283-305. https://doi.org/10.1007/s12017-016-8403-0 PMid:27193940

Shayganfard M. Are essential trace elements effective in modulation of mental disorders? Update and perspectives. Biol Trace Elem Res. 2022; 200:1032-59. https://doi.org/10.1007/s12011-021-02733-y PMid:33904124

Roth W, Mohamadzadeh M. Vitamin B12 and gut-brain homeostasis in the pathophysiology of ischemic stroke. eBio Medicine. 2021; 73. https://doi.org/10.1016/j.ebiom.2021.103676 PMid:34749301 PMCid:PMC8586745

Tamura J, Kubota K, Murakami B, Sawamura M, Matsushima T, Tamura T, et al. Immunomodulation by vitamin B12: Augmentation of CD8+ T lymphocytes and natural killer (NK) cell activity in vitamin B12-deficient patients by methyl-B12 treatment. Clin Exp Immunol. 2001; 116:28-32. https://doi.org/10.1046/j.1365-2249.1999.00870.x PMid:10209501 PMCid:PMC1905232

Djuricic L, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients. 2021; 13. https://doi.org/10.3390/nu13072421 PMid:34371930 PMCid:PMC8308533

Tantipaiboonwong P, Chaiwangyen W, Suttajit M, Kangwan N, Kaowinn S, Khanaree C, et al. Molecular mechanism of antioxidant and anti-inflammatory effects of omega-3 fatty acids in perilla seed oil and rosmarinic acid rich fraction extracted from perilla seed meal on TNF-α induced A549 lung adenocarcinoma cells. Molecules. 2021; 26. https://doi.org/10.3390/molecules26226757 PMid:34833849 PMCid:PMC8622939

Janz TG, Johnson RL, Scott D, Rubenstein SD. Anemia in the emergency department: Evaluation and treatment. Emerg Med. Pract. 2013; 15:1-15.

van Hensbroek MB, Jonker F, Bates L. Severe acquired anaemia in Africa: New concepts. Br J Haematol. 2011; 154:690-95. https://doi.org/10.1111/j.1365-2141.2011.08761.x PMid:21707575

West CE. Strategies to control nutritional anaemia. Am J Clin Nutr. 1996; 64:789-90. https://doi.org/10.1093/ajcn/64.5.789 PMid:8901803

Low MS, Speedy J, Styles CE, De-Regil LM, Pasricha SR. Daily iron supplementation for improving anaemia, iron status and health in menstruating women. Cochrane Database Syst Rev. 2016; 4. https://doi.org/10.1002/14651858.CD009747.pub2 PMid:27087396

Ayuba GI, Jensen GS, Benson KF, Okubena AM, Okubena O. Clinical efficacy of a West African Sorghum bicolor-based traditional herbal preparation Jobelyn shows increased hemoglobin and CD4+ T-lymphocyte counts in HIV-positive patients. J Altern Complement Med. 2014; 20(1):53-6. https://doi.org/10.1089/acm.2013.0125 PMid:24283768 PMCid:PMC3904510

Tayo AO, Dosunmu AO, Akinola IO, Adewunmi A, Oloyede OA, Akinbami AA, et al. Makanjuola SBL. An open-label, randomized, parallel-group comparative study of the efficacy of Sorghum bicolor extract in preoperative anemia. Nutrition. 2007; 33:113-17. https://doi.org/10.1016/j.nut.2016.05.005 PMid:27461168

Archer N, Galacteros F, Brugnara C. Clinical trials update in sickle cell anaemia. Am J Hematol. 2015; 90:934-50. https://doi.org/10.1002/ajh.24116 PMid:26178236 PMCid:PMC5752136

Umukoro S, Oluwole OG, Eduviere AT, Omogbiya IA, Ajayi AM. Jobelyn exhibited anti-inflammatory, antioxidant, and membrane-stabilizing activities in experimental models. J Basic Clin Physiol Pharmacol. 2015; 26:501-8. https://doi.org/10.1515/jbcpp-2014-0113 PMid:26020554

Barodka VM, Nagababu E, Mohanty JG, Nyhan D, Berkowitz DE, Rifkind JM, et al. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease. Blood Cell Mol Dis. 2013. https://doi.org/10.1016/j.bcmd.2013.10.004 PMid:24246527

Nagababu E, Mohanty JG, Bhamidipaty S, Ostera GR, Rifkind JM. Role of the membrane in the formation of heme degradation products in red blood cells. Life Sci. 2010; 86:133-8. https://doi.org/10.1016/j.lfs.2009.11.015 PMid:19958781 PMCid:PMC2819203

Wang C, Zennadi R. The role of RBC oxidative stress in sickle cell disease: From the molecular basis to pathologic implications. Antioxidants. 2021; 10. https://doi.org/10.3390/antiox10101608 PMid:34679742 PMCid:PMC8533084

Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014. https://doi.org/10.3389/fphys.2014.00084 PMCid:PMC3937982

Omorogbe O, Ajayi AM, Ben-Azu B, Oghwere EE, Adebesin A, Aderibigbe AO, et al. Jobelyn® attenuates inflammatory responses and neuro behavioural deficits associated with complete Freund-adjuvant-induced arthritis in mice. Biomed Pharmacother. 2018; 98:585-93. https://doi.org/10.1016/j.biopha.2017.12.098 PMid:29288974

Choy E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology. 2012; 51:3-11. https://doi.org/10.1093/rheumatology/kes113 PMid:22718924

García-González A, Gaxiola-Robles R, Zenteno-Savín T. Oxidative stress in patients with rheumatoid arthritis. Rev Invest Clin. 2015; 67:46-53.

Muller-Ladner U, Pap T, Gay RE, Neidhart M, Gay S. Mechanisms of disease: The molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheum. 2005; 1:102-10. https://doi.org/10.1038/ncprheum0047 PMid:16932639

Hernández-Hernández V, Ferraz-Amaro I, Díaz-González F. Influence of disease activity on the physical activity of rheumatoid arthritis patients. Rheumatology. 2014; 53:722-31. https://doi.org/10.1093/rheumatology/ket422 PMid:24369410

Hitchon, CA, El-Gabalawy HS. Oxidation in rheumatoid arthritis. Arthritis Res Ther. 2004; 6:265-78. https://doi.org/10.1186/ar1447 PMid:15535839 PMCid:PMC1064874

Winrow VR, Winyard PG, Morris CJ, Blake DR. Free radicals in inflammation: second messengers and mediators of tissue destruction. Br Med Bull. 1993; 49:506-22. https://doi.org/10.1093/oxfordjournals.bmb.a072627 PMid:8221019

Jones A, Al-Janabi M, Solanki K, Snack PR, Greenwood A, Doyle D, Britton KM, Huskisson E. In vivo leukocyte migration in arthritis. Arthritis Rheumatol. 1991; 34:270-5. https://doi.org/10.1002/art.1780340304 PMid:2003853

Yudoh K, Karasawa R, Masuko K, Kato T. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis. Int J Nanomedicine. 2009; 4:217-25. https://doi.org/10.2147/IJN.S7653 PMid:19918368 PMCid:PMC2775692

Rangan U, Bulkley GB. Prospects for treatment of free radical-mediated tissue injury. Br Med Bull. 1993; 49:700-18. https://doi.org/10.1093/oxfordjournals.bmb.a072641 PMid:8221033

Frech TM, Clegg DO. The utility of nutraceuticals in the treatment of osteoarthritis. Curr Rheumatol Rep. 2007; 9:25-30. https://doi.org/10.1007/s11926-007-0018-x PMid:17437663

Winter CA, Risley EA, Nuss GW. Carrageenan induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med. 1962; 111:544-7. https://doi.org/10.3181/00379727-111-27849 PMid:1400 1233

Benitz KF, Hall LM. The carregeenin-induced abscess, a new test for anti-inflammatory activity of steroids and non-steroids. Arch Int Pharmacodyn Ther. 1969; 144:185-95.

Boris A, Stevenson RH. The effects of some non-steroidal anti-inflammatory agents on carrageenin-induced exudate formation. Arch Int Pharmacodyn Ther. 1965; 153:205-9.

Pearson CM, Wood FD. Studies of polyarthritis and other lesions induced in rats by injection of mycobacterial adjuvant. General clinical and pathological characteristics and some modifying factor. Arthritis Rheumatol. 1969; 2:440-59. https://doi.org/10.1002/1529-0131(195 910)2:5<440::AID-ART1780020510>3.0.CO;2-N

Newbould BB. Chemotherapy of arthritis induced in rats by mycobaterial adjuvant. Br J Pharmacol Chemother. 1963; 21:127-36. https://doi.org/10.1111/j.1476-5381.1963.tb01508.x PMid:14066137 PMCid:PMC1703866

ShindeUA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN. Membrane stabilizing activity: a possible mechanism of action for the anti-inflammatory activity of Cedrusdeodara wood oil. Fitoterapia. 1999; 70:251-7. https://doi.org/10.1016/S0367-326X(99)00030-1

Gadamsetty G, Maru S, Sarada NC. Antioxidant and anti-inflammatory activities of the methanolic leaf extract of traditionally used medicinal plant Mimusops elengi L. J Pharm Sci. 2013; 5:125-30.

Anrather J, Iadecola JC. Inflammation and stroke: An overview. Neurotherapeutics. 2016; 13:661-70. https://doi.org/10.1007/s13311-016-0483-x PMid:27730544 PMCid:PMC5081118

Boslett J, Hemann C, Zhao YJ, Lee H, Zweier JL. Luteolinidin protects the postischemic heart through CD38 inhibition with preservation of NAD(P)(H). J Pharmacol Exp Ther. 2017; 36:99-108. https://doi.org/10.1124/jpet.116.239459 PMid:28108596 PMCid:PMC5363772

Doyle KP, Simon RP, Stenzel-Poore MP. Mechanisms of ischemic brain damage. Neuropharmacology. 2008; 55:310. https://doi.org/10.1016/j.neuropharm.2008.01.005 PMid:18308346 PMCid:PMC2603601

Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999; 79:1431-568. https://doi.org/10.1152/physrev.1999.79.4.1431 PMid:10508238

Adeloye D. An estimate of the Incidence and prevalence of stroke in Africa: A systematic review and meta-analysis. PLoS One. 2014; 9. https://doi.org/10.1371/journal.pone.0100724 PMid:24967899 PMCid:PMC4072632

Ramsey LE, Siegel JS, Lang CE, Strube M, Shulman GL, Corbetta M. Behavioural clusters and predictors of performance during recovery from stroke. Nat Hum Behav. 2017; 1. https://doi.org/10.1038/s41562-016-0038 PMid:28713861 PMCid:PMC5508212

Feigin VL, Norrving B, George MG, Foltz JL. Prevention of stroke: A strategic global imperative. Nat Rev Neurol. 2016; 12:501-12. https://doi.org/10.1038/nrneurol.2016.107 PMid:27448185 PMCid:PMC8114177

Edward CJ. Ischemic Stroke: An acute onset syndrome. Neurol. 2017; 17:1-16.

Petrovic-Djergovic D, Goonewardena SN, Pinsky DJ. Inflammatory disequilibrium in stroke. Circ Res. 2016; 119:142-58. https://doi.org/10.1161/CIRCRESAHA.116.308022 PMid:27340273 PMCid: PMC5138050

Zhang H, Gao W, Qian T, Tang J, Li J. Transcription factor changes following long term cerebral ischemia/reperfusion injury. Neural Regen Res. 2013; 8.

Meccariello B, D’Angelo S. Impact of polyphenolic-food on longevity: An elixir of life. An Overview. Antioxidants. 2021; 10. https://doi.org/10.3390/antiox10040507 PMid:33805092 PMCid:PMC8064059

Chen Y, Jui-Sheng W, Yang S, Huang C, Chang C, Sun GY, Lin T. Stroke, angiogenesis and phytochemicals. Front Biosci. 2012; S4:599-610. https://doi.org/10.2741/s287 PMid:22202079

Simret B, Litrus L, Soriano L, Monbureau M, To LK, Braithwaite SP, et al. A Pharmacological screening approach for discovery of neuroprotective compounds in ischemic stroke. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.0069233 PMid:23874920 PMCid:PMC3715457

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153:1194-217. https://doi.org/10.1016/j.cell.2013.05.039 PMid:23746838 PMCid:PMC3836174

de Almeida AJO, Ribeiro TP, de Medeiros IA. Aging: Molecular pathways and implications on the cardiovascular system. Oxid Med Cell Longev. 2017. https://doi.org/10.1155/2017/7941563 PMid:28874954 PMCid:PMC5569936

Riera CE, Merkwirth C, Filho CDDM, Dillin A. Signaling networks determining life span. Annu. Rev Biochem. 2018; 85:35-64. https://doi.org/10.1146/annurev-biochem-060815-014451 PMid:27294438

Harman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol. 1996; 11:298-300. https://doi.org/10.1093/geronj/11.3.298 PMid:13332224

Jarrett SG, Boulton ME. Consequences of oxidative stress in age-related macular degeneration. Mol Aspects Med. 2012; 33:399-417. https://doi.org/10.1016/j.mam.2012.03.009 PMid:22510306 PMCid:PMC3392472

Sachdeva V, Roy A, Bharadvaja N. Current prospects of nutraceuticals: A review. Curr Pharm Biotechnol. 2010; 21:884-96. https://doi.org/10.2174/1389201021666200130113441 PMid:32000642

Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly) phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. 2013; 18:1818-92. https://doi.org/10.1089/ars.2012.4581 PMid:22794138 PMCid:PMC3619154

Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: A mini-review. Front Nutr. 2018; 5:87. https://doi.org/10.3389/fnut.2018.00087 PMid:30298133 PMCid:PMC6160559

Oyinbo CA, Igbigbi PS, Avwioro OG. Jobelyn supplement lowered neuronal degeneration: Significance of altered p53 and ɤ-Enolase protein expressions in prefrontal cortex of rat exposed to ethanol. Ann Neurosci. 2016; 23:139-48. https://doi.org/10.1159/000449179 PMid:27721582 PMCid:PMC5043160

Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M. Healthy effects of plant polyphenols: Molecular mechanism. Int J Mol Sci. 2020; 21. https://doi.org/10.3390/ijms21041250 PMid:32070025 PMCid:PMC7072974

Thring T, Hili P, Naughton D. Anti-collagenase, antielastase and anti-oxidant activities of extracts from 21 plants. BMC Complement Med Ther. 2009; 9. https://doi.org/10.1186/1472-6882-9-27 PMid:19653897 PMCid: PMC2728709

Umukoro S, Ugbomah A, Aderibigbe A, Omogbiya A. Antioxidant property of Jobelyn® as the possible mechanism underlying its anti-amnesic effect in rodents. Basic Clin Neurosci. 2013; 4:42-9.

John R, Abolaji AO, Adedara AO, Ajayi AM, Aderibigbe AO, Umukoro S. Jobelyn® extends the life span and improves motor function in Drosophila melanogaster exposed to lipopolysaccharide via augmentation of antioxidant status. Metab Brain Dis. 2022; 37:1031-40. https://doi.org/10.1007/s11011-022-00919-4 PMid:35156155

Chun TW, Fauci AS. HIV reservoirs: pathogenesis and obstacles to viral eradication and cure. AIDS. 2012; 26(10):1261-8. https://doi.org/10.1097/QAD.0b013e328353f3f1 PMid:22472858

Naif H. Pathogenesis of HIV infection. Infect Dis Rep. 2013; 6. https://doi.org/10.4081/idr.2013.s1.e6 PMid:24470970 PMCid:PMC3892619

Yazdanpanah F, Hamblin MR, Rezaei N. The immune system and COVID-19: Friend or foe? Life Sci. 2020; 256. https://doi.org/10.1016/j.lfs.2020.117900 PMid:32502542 PMCid:PMC7266583

Goc A. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One. 2021; 16. https://doi.org/10.1371/journal.pone.0253489 PMid:34138966 PMCid:PMC8211150

Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Life Sci. 2020; 63:457-60. https://doi.org/10.1007/s11427-020-1637-5 PMid:32009228 PMCid:PMC7089049

Verma S, Twilley D, Esmear T, Oosthuizen CB, Reid AM, Nel M, Lall N. Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). Front Pharmacol. 2020; 11. https://doi.org/10.3389/fphar.2020.561334 PMid:33101023 PMCid:PMC7546787

Alkhatib G, Bombardier C, Broder CC, Feng Y, Kennedy PE, Murphy PM, et al. CC CKR5: A RANTES, MIP-1alpha, IP-1beta receptor as a fusion cofactor for macrophage-tropic HIV. Science. 1996; 272:1955-8. https://doi.org/10.1126/science.272.5270.1955 PMid:8658171

Scagnolari C, D’Amore A, Palombi F, Criscuolo E, Frasca F, Pierangeli A, et al. Naringenin is a powerful inhibitor of SARS-CoV- 2 infection in vitro. Pharmacol Res. 2021; 163. https://doi.org/10.1016/j.phrs.2020.105255 PMid:33096221 PMCid:PMC7574776

Lawal LO, Olufade II, Rafiu BO, Aremu AO. Ethnobotanical survey of plants used for treating cough associated with respiratory conditions in Ede South local government area of Osun State, Nigeria. Plants. 2020; 9. https://doi.org/10.3390/plants9050647 PMid:32443771 PMCid:PMC7286022

Alhazmi HA, Najmi A, Javed SA, Sultana S, Al Bratty M, Makeen HA, et al. Medicinal plants and isolated molecules demonstrating immunomodulation activity as potential alternative therapies for viral diseases including COVID-1. Front Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.637553 PMid:34054806 PMCid:PMC8155592

Devi PS, Kumar MS, Das SM. Evaluation of antiproliferative activity of red Sorghum bran anthocyanin on a human breast cancer cell line (mcf-7). Int J Breast Cancer. 2011. https://doi.org/10.4061/2011/891481 PMid:22312562 PMCid:PMC3262581

Pitot HC. The molecular biology of carcinogenesis. Cancer. 1993; 72:962-70. https://doi.org/10.1002/1097-0142(19930801)72:3+<962::AID-CNCR2820 721303>3.0.CO;2-H PMid:8334671

Oliveira PA, Colaço A, Chaves R, Guedes-Pinto H, Luis F, De-La-Cru P, Lopes C. Chemical carcinogenesis. An Acad Bras Cienc. 2007; 79:593-616. https://doi.org/10.1590/S0001-37652007000400004 PMid:18066431

Smolensky D, Rhodes D, McVey DS, Fawver Z, Perumal R, Herald T, et al. High-polyphenol Sorghum bran extract inhibits cancer cell growth through ROS induction, cell cycle arrest, and apoptosis. J Med Food. 2018; 21:990-8. https://doi.org/10.1089/jmf.2018.0008 PMid:29733262

Siddiqui LA, Sanna V, Ahmad N, Sechi M, Mukhtar H. Resveratrol nano formulation for cancer prevention and therapy. Ann N Y Acad Sci. 2015; 134:20-31. https://doi.org/10.1111/nyas.12811 PMid:26109073

Xu S, Shen Y, Xu J, Qi G, Chen G, Wang G, et al. Antioxidant and anticancer effects in human hepatocarcinoma (HepG2) cells of papain-hydrolyzed Sorghum kafirin hydrolysate. J Funct Foods. 2019; 58:374-82. https://doi.org/10.1016/j.jff.2019.05.016

Van Rensburg SJ. Epidemiologic and dietary evidence for a specific nutritional predisposition to esophageal cancer. J Natl Cancer Inst. 1981; 67:243-51.

Isaacson C. The change of the staple diet of black South Africans from Sorghum to maize (corn) is the cause of the epidemic of squamous carcinoma of the oesophagus. Med Hypotheses. 2005; 64:658-60. https://doi.org/10.1016/j.mehy.2004.09.019 PMid:15617883

Park JH, Darvin P, Lim EJ, Joung YH, Hong DY, Park EU, et al. Hwanggeumchal Sorghum induces cell cycle arrest, and suppresses tumor growth and metastasis through Jak2/STAT pathways in breast cancer xenografts. PLoS ONE. 2012; 7. https://doi.org/10.1371/journal.pone.0040531 PMid:22792362 PMCid:PMC3391253

Makanjuola SBL, Dosunmu D, Ajonuma L, Ogundaini A, Okubena O. Newly isolated compounds from West African Sorghum bicolor leaf sheaths Jobelyn® show potential in cancer immunosurveillance. J Cancer Res Ther. 2016; 4:31-7. https://doi.org/10.14312/2052-4994.2016-6

deKloet ER, Joels M, Holsboer F. Stress and the brain: From adaptation to disease. Nat Rev Neurosci. 2005; 6:463-75. https://doi.org/10.1038/nrn1683 PMid:15891777

McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, et al. The role of adrenocorticoids as modulators of immune function in health and disease: Neural, endocrine and immune interactions. Brain Res Rev. 1997; 23:79-133. https://doi.org/10.1016/S0165-0173(96)00012-4 PMid:9063588

McEwen BS, Gray JD, Nasca C. Recognizing resilience: Learning from the effects of stress on the brain. Neurobiol Stress. 2015; 1:1-11. https://doi.org/10.1016/j.ynstr.2014.09.001 PMid:25506601 PMCid:PMC4260341

Panossian A, Wikman G. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Curr Clin Pharmacol. 2009; 4:198-219. https://doi.org/10.2174/157488409789375311 PMid:19500070

Selye H. The general adaptation syndrome and disease of adaptation. J Clin Endocrinol Metab. 1946; 6:117-230. https://doi.org/10.1210/jcem-6-2-117 PMid:21025115

Brekhman II, Dardymov IV. New substances of plant origin which increase nonspecific resistance. Annu Rev Pharmacol Toxicol. 1968; 8:419-30. https://doi.org/10.1146/annurev.pa.09.040169.002223 PMid:4892434

Umukoro S, Omorogbe O, Aluko OM, Eduviere TA, Owoeye O, Oluwole OG. Jobelyn, a Sorghum-based nutritional supplement attenuates unpredictable chronic mild stress-induced memory deficits in mice. Behav Brain Sci. 2015; 5:586-97. https://doi.org/10.4236/jbbs.2015.513056

Umukoro S, Eduviere AT, Aladeokin AC, Olugbemide A. Antidepressant-like property of Jobelynan African unique herbal formulation in mice. Drug Res. 2014; 64:146-50. https://doi.org/10.1055/s-0033-1354366 PMid:24002928

Wiegant FA, Surinova S, Ytsma E, Langelaar-Makkinje M, Wikman G, Post JA. Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology. 2009; 10:27-42. https://doi.org/10.1007/s10522-008-9151-9 PMid:18536978

Simnadis TG, Tapsell LC, Beck EJ. Effect of sorghum consumption on health outcomes: A systematic review. Nutr Rev. 2016; 74:690-707. https://doi.org/10.1093/nutrit/nuw036 PMid:27694643

Boas LC, Campos ML, Berlanda EL, de CarvalhoNeves N, Franco OL. Antiviral peptides as promising therapeutic drug. Cell Mol Life Sci. 2019; 76. https://doi.org/10.1007/s00018-019-03138-w PMid:31101936 PMCid:PMC7079787

Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M. Plant-derived antimicrobial peptides as potential antiviral agents in systemic viral infections. Pharmaceuticals. 2021; 14(8):774. https://doi.org/10.3390/ph14080774 PMid:34451871 PMCid:PMC8400714

Afolabi MO. Resolving the identity dilemmas of Western healthcare in Africa: Towards ethical and pragmatic approaches. Culture and Dialogue. 2020; 8:147-65. https://doi.org/10.1163/24683949-12340080

Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M. Plant-derived antimicrobial peptides as potential antiviral agents in systemic viral infections. Pharmaceuticals. 2021; 14(8):774. https://doi.org/10.3390/ph14080774 PMid:34451871 PMCid:PMC8400714 126.

Afolabi MO. Resolving the identity dilemmas of Western healthcare in Africa: Towards ethical and pragmatic approaches. Culture and Dialogue. 2020; 8:147-65. https://doi.org/10.1163/24683949-12340080