UFLC-MS Method Development of Vasicinone, Pellitorine, 6-Gingerol, Costunolide, Dehydrocostuslactone, Apigenin, and Validation of Piperine, Biflorin in Polyherbal Formulations
DOI:
https://doi.org/10.18311/jnr/2024/33486Keywords:
Hydaljss08 Polyherbal Formulations, Kabusura Kudineer Churna Marketed, Marker Standards, Ultrafast Liquid ChromatographyAbstract
Standardisation of polyherbal formulations is necessary for the quality, safety, quantity, and efficacy of botanicals in marketed and newly established formulations. The Ministry of Ayush, Govt of India, recommended using polyherbal formulations to treat COVID-19, i.e., Kabusura kudineer, Nilavembu kudineer, etc., Kabusura kudineer is a Siddha-based formulation. It prevents and treats COVID-19 due to some botanicals in Kabusura kudineer, which have proven anti-inflammatory, anti-viral, and immunomodulatory effects. The current work focuses on establishing a standard protocol for the Kabusura kudineer marketed, a novel dosage form called Hydaljss08, and in plant species, mainly present in both formulations. Both formulations contain some similar crude drugs and their active constituents. They are Zingiber officinale rhizome, Syzygium aromaticum flower buds, Adhatoda vasica leaves, Anacyclus pyrethrum roots, Saussurea lappa roots, Piper longum fruits, Clerodendrum serratum roots, Coleus amboinicus roots, contain active phytopharmaceuticals are 6-gingerol, biflorin, vasicinone, pellitorine, costunolide, dehydrocostuslactone, piperine, and apigenin. Existing liquid chromatography methods were reported for individual above active compounds, but not in these formulations and combined dosage forms. Working UFLC methods have not been reported individually nor combined for the Biflorin. The current study aims to develop UFLC methods for 6-gingerol, biflorin, vasicinone, pellitorine, costunolide, dehydrocostuslactone, piperine, and apigenin in polyherbal formulations Kabusura kudineer marketed, Hydaljss08 and in isolated, fractions, extract of plant species present in both dosage forms. The preliminary identification of the phytopharmaceuticals in the polyherbal formulations, isolated fractions, and extract of plant species was done by TLC and IR spectrum. The developed liquid chromatography method was novel, simple, linear, and rapid for estimating 6-gingerol, biflorin, vasicinone, pellitorine, costunolide, dehydrocostuslactone, piperine, apigenin in a plant species, and Ayush-based formulations.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ramkishan Jatoth, S. P. Dhanabal, M. R. Jeyprakash, Thangavel Ganesh, Senthil Venkatachalam, Nunavath Raja Shekhar (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-12-15
Published 2024-03-27
References
Kumari R, Kotecha M. A review on the standardization of herbal medicines. International Journal of Pharma Sciences and Research. 2016; 7(02):97-106.
Chandel HS, Pathak AK, Tailang M. Standardization of some herbal antidiabetic drugs in the polyherbal formulation. Pharmacognosy Research. 2011; 3(1):49-56. https://doi.org/10.4103/0974-8490.79116 PMid:21731396 PMCid:PMC3119272
Kemper KJ. Ginger (Zingiber officinale). The Longwood Herbal Task Force. 1999. p. 1-18.
Charles R, Garg SN, Kumar S. New gingerdione from the rhizomes of Zingiber officinale. Fitoterapia. 2000; 71(6):716- 18.
Zhao Y, Tao QF, Zhang RP, XinZhou C, Dou H, Shi YS, et al. Two new compounds from Zingiber officinale. Chinese Chemical Letters. 2007; 18:1247-9. https://doi. org/10.1016/j.cclet.2007.09.023
Bhaskar A, Kumari A, Singh M, Kumar S, Kumar S, Dabla A, et al. 6-Gingerol exhibits potent anti-mycobacterial and immunomodulatory activity against tuberculosis. International Immunopharmacology. 2020; 87:1-8. https:// doi.org/10.1016/j.intimp.2020.106809 PMid:32693356
Amri M, Touil-Boukoffa C. In vitro anti-hydatic and immunomodulatory effects of ginger and 6-gingerol. Asian Pacific Journal of Tropical Medicine. 2016; 9(8):749-56. https://doi.org/10.1016/j.apjtm.2016.06.013 PMid:27569883
Hayati RF, Better CD, Denis D, Komarudin AG, Bowolaksono A, Yohan B, et al. 6-Gingerol inhibits chikungunya virus infection by suppressing viral replication. Hindawi BioMed Research International. 2021; 2021:6623400. https://doi.org/10.1155/2021/6623400 PMid:33855075 PMCid:PMC8019639
Rathinavel T, Palanisamy M, Palanisamy S, Thangaswamy S. Phytochemical 6-gingerol – A promising drug of choice for COVID-19. International Journal of Advanced Science and Engineering. 2020; 6(4):1482-9. https://doi.org/10.29294/ IJASE.6.4.2020.1482-1489
Kaur K, Kaushal S. Phytochemistry and pharmacological aspects of Syzygium aromaticum: A review. Journal of Pharmacognosy and Phytochemistry. 2019; 8(1):398-406.
Bhowmik KPD, Kumar S, Yadav A, Srivastava S, Paswan S, Dutta AS. Recent trends in indian traditional herbs Syzygium aromaticum and its health benefits. Journal of Pharmacognosy and Phytochemistry. 2012; 1(1):13-22.
Lee H-H, Shin J-S, Lee W-S, Ryu B, Jang DS, Lee K-T. Biflorin, isolated from the Flower Buds of Syzygium aromaticum L. Suppresses LPs-induced inflammatory Mediators via STAT1 inactivation in macrophages and protects mice from endotoxin shock. Journal of Natural Products. 2016; 79(4):711-20. https:// doi.org/10.1021/acs.jnatprod.5b00609 PMid:26977531
Silva MSd, Santos Jd, Alves AJ, da Silva RMF, Santos BS, de Lorena VMB, et al. Evaluation of the immunomodulatory effect against splenocytes of Balb/c mice of biflorin obtained from Capraria biflora by a new isolation method. Revista Brasileira de Farmacognosia. 2019; 29(4):464-9. https://doi. org/10.1016/j.bjp.2019.01.010
Saleem HN, Batool F, Mansoor HJ, Shahzad-ul-Hussan S, Saeed M. Inhibition of dengue virus protease by eugeniin, isobiflorin, and biflorin isolated from the flower buds of Syzygium aromaticum (cloves). Omega. 2019; 4(1):1525-33. https://doi.org/10.1021/acsomega.8b02861
NandhiniS, IlangoK. Comparativestudyonpharmacognostical, phytochemical investigations, and quantification of vasicine content in Adhatoda vasica Nees and Adhatoda beddomei CB Clarke extracts. Pharmacognosy Journal. 2020; 12(4):884-96. https://doi.org/10.5530/pj.2020.12.126
Claeson UP, Malmfors T, Wikman G, Bruhn JG. Adhatoda Vasica: A critical review of ethnopharmacological and toxicological data. Journal of Ethnopharmacology. 2020; 72:1-20. https://doi.org/10.1016/S0378-8741(00)00225-7 PMid:10967448
Khan R, Shamsi Y, Nikhat S. Review article medicinal benefits of Adhatoda vasica nees. In Unani and contemporary medicine. Cellmed. 2020; 10(2):131-7.
Khursheed A, Devender P, Ansari SH. Phytochemical and pharmacological investigations on Adhatoda zeylanica. A Review Pharmacognosy Journal. 2010; 2(12):513-19. https://doi.org/10.1016/S0975-3575(10)80041-0
Singh KP, Upadhyay B, Prasad R, Kumar A. Screening of Adhatoda vasica Nees as a Putative HIV-Protease Inhibitor. Journal of Phytology. 2010; 2(4):78-82.
Adhikarya R, Majhi A, Mahanti S, Bishayi B. Immunomodulatory and antioxidant properties of methanolic extract of Adhatoda vasica Nees leaves after particulate antigen stimulation in mice. Journal of Pharmacy Research. 2014; 8(10):1520-37.
Kasthuri N. The immunomodulatory effect of Adhatoda vasica in Oreo Chrom is mossambiscus. Journal of Biosciences Research. 2012; 3(2):90-9.
Pandey S, Kushwaha A, Gulab R, Singh A, Singh A. Chemical composition and medicinal uses of Anacyclus pyrethrum. Pharma Science Monitor. 2018; 9(1):551-60. Jatoth et al., 573
Chen Q-B, Gao J, Zou G-A, Xin X-L, Aisa HA. Piperidine alkaloids with diverse skeletons from Anacyclus pyrethrum. Journal of Natural Products. 2018; 81(6):1474- 82. https://doi.org/10.1021/acs.jnatprod.8b00239 PMid:29775308
Usmani A, Khushtar M, Arif M, Siddiqui MA, Sing SP, Mujahid M. Pharmacognostic and phytopharmacology study of Anacycleus pyrethrum-insight. Journal of Applied Pharmaceutical Science. 2016; 6(03):144-50. https://doi. org/10.7324/JAPS.2016.60325
Bendjeddou D, Lalaoui K, Satta D. The immunostimulating activity of the hot water-soluble polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis. Journal of Ethnopharmacology. 2003; 88:155- 60. https://doi.org/10.1016/S0378-8741(03)00226-5 PMid:12963136
Elufioye TO, Habtemariam S, Adejare A. Chemistry and pharmacology of alkylamides from natural origin. Revista Brasileirade Farmacognosia. 2020; 30(5):622-40. https:// doi.org/10.1007/s43450-020-00095-5 PMid:33071385 PMCid:PMC7546144
Gautam H, Asrani R. Phytochemical and pharmacological review of an ethnomedicinal plant Saussurea lappa. Veterinary Research International. 2018; 6(01):01-09.
Singh R, Chahal KK, Singla N. Chemical composition and pharmacological activities of Saussurea lappa: A review. Journal of Pharmacognosy and Phytochemistry. 2017; 6(4):1298-308.
Madhuri K, Elango K, Ponnusankar S. Saussurea lappa (Kuth root): A review of its traditional uses, phytochemistry, and pharmacology. Oriental Pharmacy and Experimental Medicine. 2012; 12(1):1-9. https://doi.org/10.1007/s13596- 011-0043-1
Chen HC, Chou CK, Lee SD, Wang JC, Yeh SF. Active compounds from Saussurea lappa clarks that suppress Hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Research. 1995; 27(1- 2):99-109. https://doi.org/10.1016/0166-3542(94)00083-K PMid:7486962
Ansari S, Siddiqui M, Malhotra S, Maaz M. Antiviral efficacy of qust (Saussurea lappa) and afsanteen (Artemisia absinthium) for chronic Hepatitis B: A prospective singlearm pilot clinical trial. Pharmacognosy Research. 2018; 10(3):1-7. https://doi.org/10.4103/pr.pr_157_17
Pyun H, Seo UK, Lee K. Dehydrocostus lactone, a sesquiterpene from Saussurea lappa Clarke, suppresses allergic airway inflammation by binding to dimerized translationally controlled tumor protein. Phytomedicine. 2018; (43):146-54. https://doi.org/10.1016/j. phymed.2018.03.045 PMid:29747753
Eliza J, Daisy P, Ignacimuthu S. Antioxidant activity of costunolide and eremanthin isolated from Costus speciosus (Koen ex. Retz). Chemical-Biological Interactions. 2010; 188(3):467-72. https://doi.org/10.1016/j.cbi.2010.08.002 PMid:20709041
Hullatti KK, Bhattacharjee P. Pharmacognostical evaluation of different parts of Coleus amboinicus lours Lamiaceae. Pharmacognosy Journal. 2011; 3(24):39-44. https://doi. org/10.5530/pj.2011.24.8
Chiu Y-J, Huang T-H, Chiu C-S, Lu T-C, Chen Y-W, Peng W-H, et al. Analgesic and anti-inflammatory activities of the aqueous extract from Plectranthus amboinicus spreng. both in vitro and in vivo. Evidence-Based Complementary and Alternative Medicine. 2012; 2012:508137. https:// doi.org/10.1155/2012/508137 PMid:21915187 PMCid:PMC3170901
Jimmy JL. Coleus aromaticus Benth: An update on its bioactive constituents and medicinal properties. All Life. 2021; 14(1):756-773. https://doi.org/10.1080/26895293.202 1.1968959
Silitonga M, Ilyas S, Hutahaean S, Sipahutar H. Levels of apigenin and immunostimulatory activity of leaf extracts of Bangunbangun (Plectranthus amboinicus Lour). International Journal of Biology. 2015; 7(1):46-53. https:// doi.org/10.5539/ijb.v7n1p46
Ginwala R, McTish E, Raman C, Singh N, Nagarkatti M, Nagarkatti P, et al. Apigenin, a natural flavonoid, attenuates E.A.E. severity through the modulation of dendritic cells and other immune cell functions. Journal of Neuroimmune Pharmacology. 2015; 11(1):36-47. https://doi.org/10.1007/s11481-015-9617-x PMid:26040501 PMCid:PMC4857760
Khandelwal N, Chander Y, Kumar R, Riyesh T, Kumar R, Kumar M, et al. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Research. 2020; 18(1). https://doi. org/10.1016/j.antiviral.2020.104870 PMid:32707051
Zhang W, Qiao H, Lv Y, Wang J, Chen X, Hou Y, et al. Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. Plos One. 2014; 9(10):1-9. https://doi.org/10.1371/journal. pone.0110429 PMid:25330384 PMCid:PMC4199717
Bhujbal SS, Nanda RK, Deoda RS, Kumar D, Kewatkar SM, More LS, et al. Structure elucidation of a flavonoid glycoside from the roots of Clerodendrum serratum (L.) Moon, Lamiaceae. Revista Brasileira de Farmacognosia. 2010; 20(6):1001-2. https://doi.org/10.1590/S0102- 695X2010005000041
Poornima BS, Hegde PL, Pradeep, Harini A. Pharmacological review on Clerodendrum serratum Linn. Moon. Journal of Pharmacognosy and Phytochemistry. 2015; 3(5):126-30.
Patel JJ, Acharya SR, Acharya NS. Clerodendrum serratum (L.) Moon – A review of traditional uses, phytochemistry, and pharmacological activities. Journal of Ethanopharmacology. 2014; 154(2):268-85. https://doi. org/10.1016/j.jep.2014.03.071 PMid:24727551
Bhujbal SS, Nanda RK, Deoda RS, Kumar D, Kewatkar SM, More LS, et al. Structure elucidation of newly isolated saponin from roots of Clerodendrum serratum. Oriental Pharmacy and Experimental Medicine. 2010; 10(4):319-21.
Qian S, Fan W, Qian P, Zhang D, Wei Y, Chen H, et al. Apigenin restricts FMDV infection and inhibits viral IRES-driven translational activity. Viruses. 2015; 7(4):1613- 26. https://doi.org/10.3390/v7041613 PMid:25835532 PMCid:PMC4411668
Yadav V, Krishnan A, Vohora D. A systematic review on Piper longum L: Bridging traditional knowledge and pharmacological evidence for future translational research. Journal of Ethnopharmacology. 2020; 30:112-255. https:// doi.org/10.1016/j.jep.2019.112255 PMid:31568819
Trivedi MN, Khemani A, Vachhani UD, Shah CP, Santani DD. Pharmacognostic, phytochemical analysis, and antimicrobial activity of two piper species. Pharmacie Globale. 2011; 7(05):1-4.
Kumar S, Kamboj J, Suman, Sharma S. Overview of various aspects of the health benefits of Piper longum Linn. Fruit. Journal of Acupuncture and Meridian Studies. 201; 4(2):134-40. https://doi.org/10.1016/S2005-2901(11)60020- 4 PMid:21704957
Jiang Z-Y, Liu W-F, Zhang X-M, Ma JLY-B, Chen J-J. Anti- HBV active constituents from Piper longum. Bioorganic and Medicinal Chemistry Letters. 2013; 23(7):2123-27. https:// doi.org/10.1016/j.bmcl.2013.01.118 PMid:23434420
Sunila ES, Kuttan G. Immunomodulatory and antitumor activity of Piper longum Linn and Piperine. Journal of Ethnopharmacology. 2004; 90(2-3):339-46. https://doi. org/10.1016/j.jep.2003.10.016 PMid:15013199
Pathak N, Khandelwal S. Immunomodulatory role of Piperine in cadmium-induced thymic atrophy and splenomegaly in mice. Environmental Toxicology and Pharmacology. 2009; 28(1):52-60. https://doi.org/10.1016/j.etap.2009.02.003 PMid:21783982
Santos J, Brito M, Ferreira R, Moura AP, Sousa T, Batista T, et al. Th1-biased immunomodulation and in vivo antitumor effect of a novel piperine analog. International Journal of Molecular Sciences. 2018; 19(9). https://doi.org/10.3390/ ijms19092594 PMid:30200386 PMCid:PMC6165130
Manosroia A, Jantrawut P, Akazawa H, Akihisa T, Manosroi J. Biological activities of phenolic compounds isolated from galls of Terminalia chebula Retz. (Combretaceae). Natural Product Research. 2010; 24(20); 1915-26. https://doi.org/1 0.1080/14786419.2010.488631 PMid:21108118
https://www.botanylibrary.com/phytopharmaceuticals/ alkaloids/isolation-of-vasicine-and-vasicinone-alkaloidsbotany/ 16246
Gaikwad DD, Sachin KS, Ashwini VK, Jadhav SJ, Gadhave MV. Isolation and standardization of gingerol from the ginger rhizome using TLC, HPLC, and identification tests. The Pharma Innovation Journal. 2017; 6(2):179-82.
Ma J, Jin X, Yang L, Liu Z-L. Diarylheptanoids from the rhizomes of Zingiber officinale. Phytochemistry. 2004; 65:1137-43. https://doi.org/10.1016/j. phytochem.2004.03.007 PMid:15110695
Lee H-H, Shin J-S, Lee W-S, Ryu B, Jang DS, Lee K-T. Biflorin, isolated from the flower buds of Syzygium aromaticum L. suppresses LPs-induced inflammatory Mediators via STAT1 Inactivation in macrophages and protects mice from endotoxin shock. Journal of Natural Products Research. 2016; 79(4):711-72. https://doi. org/10.1021/acs.jnatprod.5b00609 PMid:26977531
Santana ERB, Ferreira-Neto JP, Yara R, Sena EXFR, Fontes A, Lima CSA. Biological activity and photostability of biflorin micellar nanostructures. Molecules. 2015; 20:8595-604. https://doi.org/10.3390/molecules20058595 PMid:25985360 PMCid:PMC6272128
Sharma V, Thakur M, Chauhan NS, Dixit VK. Immunomodulatory activity of petroleum ether extract of Anacyclus pyrethrum. Journal of Pharmaceutical Biology. 2010; 48(11):1247-54. https://doi. org/10.3109/13880201003730642 PMid:20843161
Boonen J, Sharma V, Dixit VK, Burvenich C, Spiegeleer BD. LC‑MS N-alkylamine profiling of an ethanolic Anacyclus pyrethrum roots extract. Planta Medica. 2012; 78(16):1787-95. https://doi.org/10.1055/s-0032-1315371 PMid:23047251
Robinson A, Kumar TV, Sreedhar E, Naidu VGM, Krishna SR, Babu KS, et al. A new sesquiterpene lactone from the roots of Saussurea lappa: structure–anticancer activity study. Bioorganic and Medicinal Chemistry Letters. 2008; 18:4015-17. https://doi.org/10.1016/j.bmcl.2008.06.008 PMid:18579374
Vijayakannan R, Karan M, Dutt S, Jain V, Vasisht K. A rapid densitometric TLC method for simultaneous analysis of costunolide and dehydrocostus Lactone in Saussurea costus. Chroma. 2006; 63:277-81. https://doi.org/10.1365/s10337- 006-0733-x
Bhujbal SS, Nanda RK, Deoda RS, Kumar D, Kewatkar SM, More LS, et al. Structure elucidation of a flavonoid glycoside from the roots of Clerodendrum serratum. Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy. 2010; 20(6):1001-2. https://doi.org/10.1590/S0102- 695X2010005000041
Poureini F, Mohammadi M, Najafpour GD, Nikzad M. Comparative study on the extraction of Apigenin from parsley leaves (Petroselinum crispum) by ultrasonic and microwave methods. Chemical Papers. 2020; 74:3857-71. https://doi.org/10.1007/s11696-020-01208-z
Yang Y-C, Lee S-G, Lee H-K, Kim M-K, Lee S-H, Lee H-S. A Piperidine amide extracted from Piper longum L. fruit shows activity against Aedes aegypti mosquito Jatoth et al., larvae. Journal of Agriculture and Food Chemistry. 2002; 50:3765-7. https://doi.org/10.1021/jf011708f PMid:12059157
Khan ZR, Moni F, Sharmin S, Al-Mansur MA, Gafur A, Rahman O, Afroz F. Isolation of bulk amount of piperine as an Active Pharmaceutical Ingredient (API) from black pepper and white pepper (Piper nigrum). Journal of Pharmacology and Pharmacy. 2017; 8:253-62. https://doi. org/10.4236/pp.2017.87018
Al-Nimry SS, Alkhamis KA, Altaani BM. Validation of RP-HPLC method for determination of Omeprazole in dissolution media and application to study in vitro release from Solid-SNEDDS. Current Pharmaceutical Analysis. 2022; 18:208-17. https://doi.org/10.2174/157341291766621 0121151724
Shalavadi MH. High-performance liquid chromatography analysis of gallic acid and kaempferol in chloroform and ethanol extract of Cassia hirsuta seeds. International Journal of Green Pharmacy. 2019; 13(3):236-41.
Kumar SR, Kishan JR, Roa KNV, Duganath N, Kumanam R. Simultaneous spectrophotometric estimation of curcuminoids and ascorbic acid in bulk drug and ayurvedic polyherbal tablet dosage form. Asian Journal of Research Chemistry. 2010; 3(3):678-81.
Patel PH, Shah JR, Soni H, Patel V, Patel J. Development and validation of an analytical method for estimation of calcium in herbo mineral formulation by atomic absorption spectrophotometry. Journal of Natural Remedies. 2022; 22(4):597-606. https://doi.org/10.18311/jnr/2022/31332
Dhillon A, Sardana S, Thakkar AR. Development and validation of HPLC and UV spectrophotometric method for the quantification of cinnamaldehyde in Cinnamon bark extract. Journal of Natural Remedies. 2023; 23(1):111- 19. https://doi.org/10.18311/jnr/2023/30836