Phytoconstituents Loaded Liposomes Fabricated Based on Box Behnken Design for Metabolic Syndrome: In Vitro and In Vivo Characterization
DOI:
https://doi.org/10.18311/jnr/2023/33735Keywords:
Berberine, Metabolic Syndrome, Phytosterol, QuercetinAbstract
The global use of secondary metabolites like flavonoids, plant sterols, and alkaloids has been increasing due to their therapeutic benefits and fewer side effects compared to modern medicines. However, despite promising in vitro results, many herbal drugs and extracts demonstrate limited effectiveness in vivo due to their low lipid solubility and poor bioavailability. To address this issue, novel formulation strategies, particularly lipid-based delivery systems, are being proposed as carriers to enhance their bioavailability. This study focuses on the pharmaceutical development of liposomes that encapsulate three phytoconstituents, namely quercetin, berberine, and phytosterol, using the Quality by Design (QbD) concept. The Ishikawa diagram was utilized to identify the key factors affecting formulation quality, and the statistical experiment design concept was employed to optimize these factors. The liposomes were designed using the screening with the Placket-Burman approach and further optimized using the Box-Behnken method. The optimized liposomes exhibited an ideal size and achieved high entrapment efficiencies of 80.6%, 81.3%, and 80.35% for quercetin, berberine, and phytosterol, respectively. These liposomes were prepared using Phospholipon 90 G and cholesterol through the thin film hydration method. The resulting liposomes were thoroughly characterized and evaluated for morphology, % drug release, pharmacodynamic investigation, and stability studies.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Puja Bhavsar, Lalit Lata Jha, Kinjal Bera, Shraddha Patel (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-07-04
Published 2023-08-31
References
Nouri Z, Hajialyani M, Izadi Z, Bahramsoltani R, Farzaei MH, Abdollahi M. Nanophytomedicines for the prevention of metabolic syndrome: A pharmacological and biopharmaceutical review. Frontiers in Bioengineering and Biotechnology. 2020; 8:425. https://doi.org/10.3389/fbioe.2020.00425 PMid:32478050 PMCid:PMC7240035 DOI: https://doi.org/10.3389/fbioe.2020.00425
Bergman RN, Van Citters GW, Mittelman SD, Dea MK, Hamilton-Wessler M, Kim SP, Ellmerer M. Central role of the adipocyte in the metabolic syndrome. Journal of Investigative Medicine. 2001; 49(1):119- 26. https://doi.org/10.2310/6650.2001.34108 PMid:11217141 DOI: https://doi.org/10.2310/6650.2001.34108
Kaur J. A comprehensive review on metabolic syndrome. Cardiology Research and Practice. 2014; 1-21. https://doi.org/10.1155/2014/943162 PMid:24711954 PMCid:PMC3966331 DOI: https://doi.org/10.1155/2014/943162
Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats. Indian Journal of Clinical Biochemistry. 2010; 25(2):188. https:// doi.org/10.1007/s12291-010-0034-x PMid:23105908 PMCid:PMC3453107 DOI: https://doi.org/10.1007/s12291-010-0034-x
Ożarowski M, Mikołajczak P, Kujawski R, Wielgus K, Klejewski A, Wolski H, Seremak-Mrozikiewicz A. Pharmacological effect of quercetin in hypertension and its potential application in pregnancy-induced hypertension: Review of in vitro, in vivo, and clinical studies. Evidence-Based Complementary and Alternative Medicine. 2018; 2018. https://doi. org/10.1155/2018/7421489 PMid:30622610 PMCid: PMC6304490 DOI: https://doi.org/10.1155/2018/7421489
Middleton Jr E. Effect of plant flavonoids on immune and inflammatory cell function. Flavonoids in the living system. 1998; 175-82. https://doi. org/10.1007/978-1-4615-5335-9_13 PMid:9781303 DOI: https://doi.org/10.1007/978-1-4615-5335-9_13
Perez-Vizcaino F, Duarte J, Jimenez R, Santos-Buelga C, Osuna A. Antihypertensive effects of the flavonoid quercetin. Pharmacological Reports. 2009; 61(1):67- 75. https://doi.org/10.1016/S1734-1140(09)70008-8 PMid:19307694 DOI: https://doi.org/10.1016/S1734-1140(09)70008-8
Talirevic E, Sehovic J. Quercetin in the treatment of dyslipidemia. Medical Archives. 2012; 66(2):87. https://doi.org/10.5455/medarh.2012.66.87-88 PMid:22486135 DOI: https://doi.org/10.5455/medarh.2012.66.87-88
Sikder K, Kesh SB, Das N, Manna K, Dey S. The high antioxidative power of quercetin (aglycone flavonoid) and its glycone (rutin) avert high cholesterol diet induced hepatotoxicity and inflammation in Swiss albino mice. Food and Function. 2014; 5(6):1294-303. https://doi.org/10.1039/c3fo60526d PMid:24745035 DOI: https://doi.org/10.1039/c3fo60526d
Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: An overview. Asian Pacific journal of tropical biomedicine. 2013; 3(4):253-66. https://doi.org/10.1016/S2221-1691(13)60060-X PMid: 23620848 DOI: https://doi.org/10.1016/S2221-1691(13)60060-X
Lombardo D, Calandra P, Barreca D, Magazù S, Kiselev MA. Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials. 2016; 6(7):125. https://doi.org/10.3390/nano6070125 PMid: 28335253 PMCid:PMC5224599 DOI: https://doi.org/10.3390/nano6070125
Laughton MJ, Evans PJ, Moroney MA, Hoult JR, Halliwell B. Inhibition of mammalian 5-lipoxygenase and cyclo-oxygenase by flavonoids and phenolic dietary additives: Relationship to antioxidant activity and to iron ion-reducing ability. Biochemical pharmacology. 1991; 42(9):1673-81. https://doi. org/10.1016/0006-2952(91)90501-U PMid:1656994 DOI: https://doi.org/10.1016/0006-2952(91)90501-U
Boons GJ. Liposomes modified by carbohydrate ligands can target B cells for the treatment of B-cell lymphomas. Expert review of vaccines. 2010; 9(11):1251-6. https://doi.org/10.1586/erv.10.121 PMid:21087105 PMCid:PMC3016876 DOI: https://doi.org/10.1586/erv.10.121
Cui HX, Hu YN, Li JW, Yuan K. Hypoglycemic mechanism of the berberine organic acid salt under the synergistic effect of intestinal flora and oxidative stress. Oxidative medicine and cellular longevity. 2018; 2018. https://doi.org/10.1155/2018/8930374 PMid:30662584 PMCid:PMC6313974 DOI: https://doi.org/10.1155/2018/8930374
Dai P, Wang J, Lin L, Zhang Y, Wang Z. Renoprotective effects of berberine as adjuvant therapy for hypertensive patients with type 2 diabetes mellitus: Evaluation via biochemical markers and color Doppler ultrasonography. Experimental and therapeutic medicine. 2015; 10(3):869-76. https:// doi.org/10.3892/etm.2015.2585 PMid:26622407 PMCid:PMC4533140 DOI: https://doi.org/10.3892/etm.2015.2585
Yin J, Ye J, Jia W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharmaceutica Sinica B. 2012; 2(4):327-34. https://doi.org/10.1016/j. apsb.2012.06.003 DOI: https://doi.org/10.1016/j.apsb.2012.06.003
Ma YG, Liang L, Zhang YB, Wang BF, Bai YG, Dai ZJ, Xie MJ, Wang ZW. Berberine reduced blood pressure and improved vasodilation in diabetic rats. Journal of molecular endocrinology. 2017; 59(3):191-204. https://doi.org/10.1530/JME-17-0014 PMid:28515053 DOI: https://doi.org/10.1530/JME-17-0014
Mahami S, Salehi M, Mehrabi M, Vahedi H, Hassani MS, Bitaraf FS, Omri A. pH-sensitive HPMCPchitosan nanoparticles containing 5-aminosalicylic acid and berberine for oral colon delivery in a rat model of ulcerative colitis. International Journal of Biological Macromolecules. 2023; 244:125332. https://doi.org/10.1016/j.ijbiomac.2023.125332 PMid:37302632 DOI: https://doi.org/10.1016/j.ijbiomac.2023.125332
Lan J, Zhao Y, Dong F, Yan Z, Zheng W, Fan J, Sun G. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. Journal of Ethnopharmacology. 2015; 161:69-81. https://doi. org/10.1016/j.jep.2014.09.049 PMid:25498346 DOI: https://doi.org/10.1016/j.jep.2014.09.049
Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G, Buzoianu AD. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Frontiers in pharmacology. 2018; 9:557. https://doi.org/10.3389/fphar.2018.00557 PMid:30186157 PMCid:PMC6111450 DOI: https://doi.org/10.3389/fphar.2018.00557
Wang Z, Wu J, Zhou Q, Wang Y, Chen T. Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evidence-Based Complementary and Alternative Medicine. 2015; 2015. https://doi. org/10.1155/2015/239749 PMid:25866534 PMCid:PMC4381853 DOI: https://doi.org/10.1155/2015/239749
Gupta R, Sharma AK, Dobhal MP, Sharma MC, Gupta RS. Antidiabetic and antioxidant potential of β-sitosterol in streptozotocin-induced experimental hyperglycemia. Journal of Diabetes. 2011; 3(1):29- 37. https://doi.org/10.1111/j.1753-0407.2010.00107.x PMid:21143769 DOI: https://doi.org/10.1111/j.1753-0407.2010.00107.x
Sikder K, Das N, Kesh SB, Dey S. Quercetin and β-sitosterol prevent high-fat diet induced dyslipidemia and hepatotoxicity in Swiss albino mice. 2014; 52:60-6.
Yuan C, Zhang X, Long X, Jin J, Jin R. Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice. Lipids in Health and Disease. 2019; 18:1. https:// doi.org/10.1186/s12944-019-1096-2 PMid:31351498 PMCid:PMC6661088 DOI: https://doi.org/10.1186/s12944-019-1096-2
Lombardo D, Kiselev MA. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics. 2022; 14(3):543. https://doi.org/10.3390/pharmaceutics14030543 PMid:35335920 PMCid:PMC8955843 DOI: https://doi.org/10.3390/pharmaceutics14030543
Ebrahimzadeh-Bideskan AR, Hami J, Alipour F, Haghir H, Fazel AR, Sadeghi A. Protective effects of ascorbic acid and garlic extract against lead-induced apoptosis in developing rat hippocampus. Metabolic brain disease. 2016; 31:1123-32. https://doi. org/10.1007/s11011-016-9837-7 PMid:27311610 DOI: https://doi.org/10.1007/s11011-016-9837-7
Ewert KK, Scodeller P, Simón-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR. Cationic liposomes as vectors for nucleic acid and hydrophobic drug therapeutics. Pharmaceutics. 2021; 13(9):1365. https://doi.org/10.3390/pharmaceutics13091365 PMid:34575441 PMCid:PMC8465808 DOI: https://doi.org/10.3390/pharmaceutics13091365
Kumar Giri T, Giri A, Kumar Barman T, Maity S. Nanoliposome is a promising carrier of protein and peptide biomolecule for the treatment of cancer. Anti- Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2016; 16(7):816-31. https://doi.org/10.2174/1871520 616666151116121821 PMid:26567624 DOI: https://doi.org/10.2174/1871520616666151116121821
Lee MK. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. Pharmaceutics. 2020; 12(3):264. https://doi.org/10.3390/pharmaceutics12030264 PMid:32183185 PMCid:PMC7151102 DOI: https://doi.org/10.3390/pharmaceutics12030264
Sahu AK, Jain V. Screening of process variables using Plackett–Burman design in the fabrication of gedunin-loaded liposomes. Artificial cells,nanomedicine, and biotechnology. 2017; 45(5):1011- 22. https://doi.org/10.1080/21691401.2016.1200057 PMid:27917681 DOI: https://doi.org/10.1080/21691401.2016.1200057
Khristi A, Jha LL, Dharamsi A. Screening of biodegradable polymer and most effective variables in preparation of essential oil loaded nanoparticles for pulmonary delivery using taguchi design. Indian Drugs Journal. 2021; 58(2):75-80. https://doi. org/10.53879/id.58.02.12664 DOI: https://doi.org/10.53879/id.58.02.12664
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Klllç CS, Sytar O, Sharifi-Rad M. Therapeutic potential of quercetin: New insights and perspectives for human health. ACS Omega. 2020; 5(20):11849–72. https:// doi.org/10.1021/acsomega.0c01818 PMid:32478277 PMCid:PMC7254783 DOI: https://doi.org/10.1021/acsomega.0c01818