Emblica officinalis Gaertn. (Amalaki): A Natural Herbal Remedy to Enhance Cardiorespiratory Fitness in Ayurveda - An In Silico Molecular Docking Approach
DOI:
https://doi.org/10.18311/jnr/2023/34637Keywords:
Aerobic Fitness, Endurance, Molecular Docking, Network Pharmacology, Stamina, StrengthAbstract
Background: Cardiorespiratory fitness is the capacity of the circulatory and respiratory systems to transport oxygen to the skeletal muscle mitochondria for energy production during physical activity. Cardiorespiratory fitness has been recognized as a vital health biomarker and is very crucial for sports persons. Physical activities, aerobic exercise, yoga, meditation, nutritional supplements, and ergogenic aids are the ways to enhance cardiorespiratory fitness. Emblica officinalis Gaertn. is one of the widely used drugs in Ayurveda traditional medicine to enhance Cardiorespiratory Fitness (CRF). However, there is a dearth of clear information regarding how Emblica officinalis can improve CRF. Objective: The current in silico molecular docking study was planned to identify the phytochemicals, and targets of endurance and predict the probable mode of action of the drug and thereby substantiate the ability of Emblica officinalis as a natural and ethical way of enhancing cardiorespiratory fitness. Methods: The phytochemicals and targets are collected from reliable sources, and the effectiveness of these gene targets was validated using network pharmacology ligand-target interaction methods. The Protein Data Bank and PubChem were used to find the ligands and targets, and PyRx was used to do docking. Conclusion: Emblica officinalis is found to have a positive influence on the 12 metabolic pathways that act in enhancing the cardiorespiratory endurance in the human being. PRKCA was analyzed and concluded as the highly modulated gene target with the lowest binding energy. Thus, Emblica officinalis was found to have an action in enhancing cardio-respiratory endurance.
Downloads
Metrics
Published
How to Cite
License
Copyright (c) 2023 Amal S. Chandran, Ashok Patil, Sanjiv Kumar, Krishika Muralidharan, Sreeja V. Kaimal (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-09-14
Published 2023-10-31
References
Peralta M, Henriques-Neto D, Gouveia ÉR, Sardinha LB, Marques A. Promoting health-related cardiorespiratory fitness in physical education: A systematic review. PLoS One. 2020; 15(8):e0237019. https://doi.org/10.1371/journal.pone.0237019 PMid:32745088 PMCid:PMC7398517 DOI: https://doi.org/10.1371/journal.pone.0237019
Aghjayan SL, Lesnovskaya A, Esteban-Cornejo I, Peven JC, Stillman CM, Erickson KI. Aerobic exercise, cardiorespiratory fitness, and the human hippocampus. Hippocampus. 2021; 31(8):817–44. https://doi.org/10.1002/hipo.23337 PMid:34101305 PMCid:PMC8295234 DOI: https://doi.org/10.1002/hipo.23337
Tiwari S, Gupta SK, Pathak AK. A double-blind, randomized, placebo-controlled trial on the effect of Ashwagandha (Withania somnifera dunal) root extract in improving cardiorespiratory endurance and recovery in healthy athletic adults. J Ethnopharmacol. 2021; 272(113929):113929. https://doi.org/10.1016/j.jep.2021.113929 PMid:33600918 DOI: https://doi.org/10.1016/j.jep.2021.113929
Karpovich PV. American Association for Health, Physical Education and Recreation. Research Quarterly American Association for Health, Physical Education and Recreation. 2013; 12(1941):432–50. https://doi.org/10.1080/10671188.1941.10624697 DOI: https://doi.org/10.1080/10671188.1941.10624697
Mathews NM. Prohibited contaminants in dietary supplements. Sports Health. 2018; 10(1):19-30. https://doi.org/10.1177/1941738117727736 PMid:28850291 PMCid: PMC5753965 DOI: https://doi.org/10.1177/1941738117727736
Buttar KK, Kacker S, Saboo N. Normative data of maximal oxygen consumption (VO2 max) among healthy young adults: A cross-sectional study. J Clin Diagn Res. 2022; 16(7):cc31cc34. https://doi.org/10.7860/JCDR/2022/53660.16672 DOI: https://doi.org/10.7860/JCDR/2022/53660.16672
Dwivedi V, Lakhotia SC. Ayurvedic Amalaki Rasayana promotes improved stress tolerance and thus has anti-ageing effects in Drosophila melanogaster. J Biosci. 2016; 41(4):697–711. https://doi.org/10.1007/s12038-0169641-x PMid:27966490 DOI: https://doi.org/10.1007/s12038-016-9641-x
Kumar V, Aneesh KA, Kshemada K, Ajith KGS, Binil RSS, Deora N, et al. Amalaki rasayana, a traditional Indian drug enhances cardiac mitochondrial and contractile functions and improves cardiac function in rats with hypertrophy. Sci Rep. 2017; 7(1):8588. https://doi.org/10.1038/s41598-01709225-x PMid:28819266 PMCid:PMC5561106 DOI: https://doi.org/10.1038/s41598-017-09225-x
Gupta A, Kumar S, Rajput R, Srivastava R, Rai RK, Sastry JLN. Evaluation of Ratnaprash for its effect on strength, stamina and fatigue using swim endurance test and biochemical estimation in Swiss albino mice. Anc Sci Life. 2015; 35(1):26–31. https://doi.org/10.4103/02577941.165626 PMid:26600664 PMCid:PMC4623629 DOI: https://doi.org/10.4103/0257-7941.165626
Akter R, Khan SS, Kabir MT, Halder S. GC-MS-employed phytochemical characterization, synergistic antioxidant, and cytotoxic potential of Triphala methanol extract at nonequivalent ratios of its constituents. Saudi J Biol Sci. 2022; 29(6):103287. https://doi.org/10.1016/j.sjbs.2022.103287 PMid:35592742 PMCid:PMC9112002 DOI: https://doi.org/10.1016/j.sjbs.2022.103287
U.S. Department of Agriculture, Agricultural Research Service. 1992-2016. Dr. Duke’s Phytochemical and Ethnobotanical Databases. Home Page, https://phytochem.nal.usda.gov/
Jankowski F, Parthasarathy A, Farah W, Flynn C. Molsoft: Molonglo Telescope Observing Software. 2019.
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021; 49(D1):D1388–95. https://doi.org/10.1093/nar/gkaa971 PMid:33151290 PMCid:PMC77 78930 DOI: https://doi.org/10.1093/nar/gkaa971
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1). https://doi.org/10.1038/srep42717 PMid:28256516 PMCid:PMC5335600 DOI: https://doi.org/10.1038/srep42717
Gfeller D, Michielin O, Zoete V. Shaping the interaction landscape of bioactive molecules. Bioinformatics. 2013; 29(23):3073–9. https://doi.org/10.1093/bioinformatics/btt540PMid:24048355 DOI: https://doi.org/10.1093/bioinformatics/btt540
Zhao Y, Huang G, Chen Z, Fan X, Huang T, Liu J, et al. Four loci are associated with cardiorespiratory fitness and endurance performance in young Chinese females. Sci Rep. 2020; 10(1):10117. https://doi.org/10.1038/s41598-020-67045-y PMid:32572135 PMCid:PMC7723046 DOI: https://doi.org/10.1038/s41598-020-67045-y
Chung HC, Keiller DR, Roberts JD, Gordon DA. Do exercise-associated genes explain phenotypic variance in the three components of fitness? A systematic review and meta-analysis. PLoS One. 2021; 16(10):e0249501. https://doi.org/10.1371/journal.pone.0249501 PMid:34648504 PMCid:PMC8516263 DOI: https://doi.org/10.1371/journal.pone.0249501
Peter I, Papandonatos GD, Belalcazar LM, Yang Y, Erar B, Jakicic JM, et al. Genetic modifiers of cardiorespiratory fitness response to lifestyle intervention. Med Sci Sports Exerc. 2014; 46(2):302–11. https://doi.org/10.1249/MSS.0b 013e3182a66155PMid:23899896 PMCid:PMC405 5466 DOI: https://doi.org/10.1249/MSS.0b013e3182a66155
North K. Why is Alpha-actinin-3 deficiency so common in the general population? The evolution of athletic performance. Twin Res Hum Genet. 2008; 11(4):384-94. https://doi.org/10.1375/twin.11.4.384 PMid:18637739 DOI: https://doi.org/10.1375/twin.11.4.384
Hagberg JM. Do genetic variations alter the effects of exercise training on cardiovascular disease and can we identify the candidate variants now or in the future? J Appl Physiol. 2011; 111(3):916–28. https://doi.org/10.1152/jappl physiol.00153.2011PMid:21565989 DOI: https://doi.org/10.1152/japplphysiol.00153.2011
Ciulei MA. Relationship of DNA Methylation with Cardiovascular Fitness and Body Composition. 2014.
Yang J, Tan H, Sun M, Chen R, Zhang J, Liu C, et al. Prediction of high-altitude cardiorespiratory fitness impairment using a combination of physiological parameters during exercise at sea level and genetic information in an integrated risk model. Front Cardiovasc Med. 2022;8:719776. https://doi.org/10.3389/ fcvm.2021.719776PMid:35071338 PMCid: PMC8782201 DOI: https://doi.org/10.3389/fcvm.2021.719776
Kim HJ, Lee SY, Kim CM. Association between gene polymorphisms and obesity and physical fitness in Korean children. Biol Sport. 2018; 35(1):21-27. https://doi.org/10.5114/biolsport.2018.70748 DOI: https://doi.org/10.5114/biolsport.2018.70748
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021; 49(D1):D605–12. https://doi.org/10.1093/nar/ gkaa1074 PMid:33237311 PMCid:PMC7779004 DOI: https://doi.org/10.1093/nar/gkaa1074
Systèmes D. BIOVIA discovery studio modeling environment. San Diego: DassaultSystèmesBiovia; 2016.
Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules. 2015; 20(7):13384–421. https://doi.org/10.3390/molecules200713384 PMid:26205061 PMCid: PMC6332083 DOI: https://doi.org/10.3390/molecules200713384
Semenza GL. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends in molecular medicine. 2001; 7(8):345-50. https://doi.org/10.1016/S1471-4914(01)02090-1 PMid:11516994 DOI: https://doi.org/10.1016/S1471-4914(01)02090-1
Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, et al. Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun Signal. 2011; 9(1):19. https://doi.org/10.1186/1478-811X-9-19 PMid:21939514 PMCid:PMC3198985 DOI: https://doi.org/10.1186/1478-811X-9-19
Apte RS, Chen DS, Ferrara N. VEGF in signalling and disease: Beyond discovery and development. Cell. 2019; 176(6):1248-64. https://doi.org/10.1016/j.cell.2019.01.021 PMid:30849371 PMCid:PMC6410740 DOI: https://doi.org/10.1016/j.cell.2019.01.021
Ntovas P, Loumprinis N, Maniatakos P, Margaritidi L, Rahiotis C. The effects of physical exercise on saliva composition: A comprehensive review. Dent J. 2022; 10(1):7. https://doi.org/10.3390/dj10010007 PMid:35049605 PMCid:PMC87 75020 DOI: https://doi.org/10.3390/dj10010007
Kay AM, Simpson CL, Stewart JA Jr. The role of AGE/ RAGE signalling in diabetes-mediated vascular calcification. J Diabetes Res. 2016; 2016:6809703. https://doi.org/10.1155/2016/6809703 PMid:27547766 PMCid:PMC4980539 DOI: https://doi.org/10.1155/2016/6809703
Sarwar M, Du X-J, Dschietzig TB, Summers RJ. The actions of relaxin on the human cardiovascular system: Cardiovascular actions of relaxin. Br J Pharmacol. 2017; 174(10):933–49. https://doi.org/10.1111/bph.13523 PMid:27239943 PMCid:PMC5406304 DOI: https://doi.org/10.1111/bph.13523
Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris). 2021; 82(3–4):193–7. https://doi.org/10.1016/j.ando.2020.03.012 PMid:32473788 DOI: https://doi.org/10.1016/j.ando.2020.03.012
El Shear F. Novel paradigms in the therapeutic management of heart failure with preserved ejection fraction: Clinical perspectives. Am J Cardiovasc Dis. 2019; 9(5):91-108.
Fallo F. Renin-angiotensin-aldosterone system and physical exercise. J Sports Med Phys Fitness. 1993; 33(3):306–12. https://doi.org/10.1016/j.hfc.2018.08.002 PMid:30449384 DOI: https://doi.org/10.1016/j.hfc.2018.08.002
Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015; 5(5):390–401. https://doi.org/10.1016/j.apsb.2015.07.001PMid:26579470 PMCid:PMC4629442 DOI: https://doi.org/10.1016/j.apsb.2015.07.001
Fan W, Waizenegger W, Lin CS, Sorrentino V, He MX, Wall CE, Li H, Liddle C, Ruth TY, Atkins AR, Auwerx J. PPARδ promotes running endurance by preserving glucose. Cell metabolism. 2017; 25(5):1186-93. https://doi.org/10.1016/j.cmet.2017.04.006PMid:28467934 PMCid:PMC5492977 DOI: https://doi.org/10.1016/j.cmet.2017.04.006
Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X. Research progress on the PI3K/AKT signalling pathway in gynaecological cancer (Review). Mol Med Rep. 2019; 19(6):4529–35. https://doi.org/10.3892/mmr.2019.10121 DOI: https://doi.org/10.3892/mmr.2019.10121
Zardecki C, Dutta S, Goodsell DS, Lowe R, Voigt M, Burley SK. PDB-101: Educational resources supporting molecular explorations through biology and medicine. Protein Sci. 2022; 31(1):129–40. https://doi.org/10.1002/pro.4200PMid:34601771 PMCid:PMC8740840 DOI: https://doi.org/10.1002/pro.4200
Williams K, Carrasquilla GD, Ingerslev LR, Hochreuter MY, Hansson S, Pillon NJ, et al. Epigenetic rewiring of skeletal muscle enhancers after exercise training supports a role in the whole-body function and human health. Mol Metab. 2021; 53(101290):101290. https://doi.org/10.1016/j.molmet.2021.101290 PMid:34252634 PMCid:PMC8355925 DOI: https://doi.org/10.1016/j.molmet.2021.101290
Panigrahi A, O’Malley BW. Mechanisms of enhancer action: The known and the unknown. Genome Biol. 2021; 22(1):108. https://doi.org/10.1186/s13059-021-02322-1PM id:33858480 PMCid:PMC8051032 DOI: https://doi.org/10.1186/s13059-021-02322-1
Østhus IB, Sgura A, Berardinelli F, Alsnes IV, Brønstad E, Rehn T, Støbakk PK, Hatle H, Wisløff U, Nauman J. Telomere length and long-term endurance exercise: Does exercise training affect biological age? A pilot study. PLoS One. 2012; 7(12):e52769. https://doi.org/10.1371/journal.pone.0052769 PMid:23300766 PMCid:PMC3530492 DOI: https://doi.org/10.1371/journal.pone.0052769
Song S, Lee E, Kim H. Does exercise affect telomere length? A systematic review and meta-analysis of randomized controlled trials. Medicina (Kaunas). 2022; 58(2):242. https://doi.org/10.3390/medicina58020242 PMid:35208566 PMCid:PMC8879766 DOI: https://doi.org/10.3390/medicina58020242
Guruprasad KP, Dash S, Shivakumar MB, Shetty PR, Raghu KS, Shamprasad BR, Udupi V, Acharya RV, Vidya PB, Nayak J, Mana AE, Moni R, Sankaran MT, Satyamoorthy K. Influence of Amalaki Rasayana on telomerase activity and telomere length in human blood mononuclear cells. J Ayurveda Integr Med. 2017; 8(2):105-112. https://doi.org/10.1016/j.jaim.2017.01.007 PMid:28602428 PMCid:PMC5497001 DOI: https://doi.org/10.1016/j.jaim.2017.01.007