A Review on Antidiabetic Edible Plants Used by Garo Community of Meghalaya, India
DOI:
https://doi.org/10.18311/jnr/2024/34988Keywords:
Anti-diabetic Edible Plants, Anti-diabetic Activity, Garo Community, Toxicity StudyAbstract
Metabolic syndrome characterized by inadequate insulin secretion. The world's 2.8% of the population is affected by diabetes, and it is projected to reach 4.4% by 2030. Recently plant-based products have given significant results for curing diabetics. In this review article, we have summarized the taxonomical classification, phytochemical investigation, toxicological study, and anti-diabetic activity of nine edible plants traditionally used by Garo communities of Meghalaya to cure diabetic mellitus. The book “Antidiabetic Plants in India and Herbal Based Antidiabetic Research” by K Chandrasekhar Naidu and T Pullaiah helps to choose the anti-diabetic plant species of Meghalaya and Scopus, Web of Science, PubMed, Google Scholar databases have been used for collecting the complete information of plants. Literature reveals that all the selected plants contain bio-active constituents (alkaloids, phenols, flavonoids, tannins, terpenoids, glycosides, etc.), do not give a toxic effect at the highest level of dose, and give significant anti-diabetic activity. This review article helps natural researchers discover of new anti-diabetic drug.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dr. Bikash Debnath, Waikhom Somraj Singh, Dr. Sanchari Goswami, SOURAV SAHA (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-02-14
Published 2024-05-28
References
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethno Pharmacol. 2002; 81(1):81-100. https://doi.org/10.1016/S0378-8741(02)00059-4 PMid:12020931
Sharma R, Arya V. A review on fruits having anti-diabetic potential. J Chem Pharm Res. 2011; 3(2):204-12.
Van Andel T, Carvalheiro LG. Why urban citizens in developing countries use traditional medicines: The case of Suriname. eCAM. 2013; 2013. https://doi.org/10.1155/2013/687197 PMid:23653663 PMCid:PMC3638607
Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TP. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007; 40(3):163-73. https://doi.org/10.3164/jcbn.40.163 PMid:18398493 PMCid:PMC2275761
Momin KC, Suresh CP, Momin BC, Singh YS, Singh SK. An ethno-botanical study of wild plants in Garo Hills region of Meghalaya and their usage. International J Minor Fruits, Medicinal and Aromatic Plants. 2016; 2(1):47-53.
Sharma M, Sharma CL, Marak PN. Indigenous uses of medicinal plants in North Garo Hills, Meghalaya, NE India. Res J Recent Sci. 2014; 3:137-46.
Schroeder HA. Relations between hardness of water and death rates from certain chronic and degenerative diseases in the United States. J Chronic Dis. 1960; 12(6):586-91. https://doi.org/10.1016/0021-9681(60)90002-3 PMid:13748670
Rajas F, Gautier-Stein A, Mithieux G. Glucose-6 phosphate, a central hub for liver carbohydrate metabolism. Metabolites. 2019; 9(12). https://doi.org/10.3390/metabo9120282 PMid:31756997 PMCid:PMC6950410
Bogers RP, Bemelmans WJ, Hoogenveen RT, Boshuizen HC, Woodward M, Knekt P, et al. Association of overweight with increased risk of coronary heart disease partly independent of blood pressure and cholesterol levels: A meta-analysis of 21 cohort studies including more than 300 000 persons. Arch Intern Med. 2007; 167(16):1720-8. https://doi.org/10.1001/archinte.167.16.1720 PMid:17846390
Zheng C, Hu M, Gao F. Diabetes and pulmonary tuberculosis: A global overview with special focus on the situation in Asian countries with high TB-DM burden. Glob Health Action. 2017; 10(1). https://doi.org/10.1080/16549716.2016.1264702 PMid:28245710 PMCid:PMC5328328
Pradeepa R, Mohan V. Prevalence of Type 2 diabetes and its complications in India and economic costs to the nation. Eur J Clin Nutr. 2017; 71(7):816-24. https://doi.org/10.1038/ejcn.2017.40 PMid:28422124
Daivadanam M, Absetz P, Sathish T, Thankappan KR, Fisher EB, Philip NE, et al. Lifestyle change in Kerala, India: Needs assessment and planning for a community-based diabetes prevention trial. BMC Public Health. 2013; 13:1-6. https://doi.org/10.1186/1471-2458-13-95 PMid:23375152 PMCid:PMC3576354
Deb S, LynrahM, Tiwari BK. Technological innovations in shifting agricultural practices by three tribal farming communities of Meghalaya, Northeast India. Trop Ecol. 2013; 54(2).
Post MW, Burling R. The Tibeto-Burman languages of Northeast India. The Sino-Tibetan Languages. 2017. p. 213.
Pullaiah T, Naidu KC. Antidiabetic plants in India and herbal based antidiabetic research. Regency Publications. 2003.
Mueller M, Hobiger S, Jungbauer A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010; 122(4):987-96. https://doi.org/10.1016/j.foodchem.2010.03.041
Zohary D, Hopf M, Weiss E. Domestication of plants in the old world: The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press. 2012. https://doi.org/10.1093/acprof:osobl/9780199549061.001.0001
Hertog MG, Feskens EJ, Kromhout D, Hollman PC, Katan MB. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet. 1993; 342(8878):1007-11. https://doi.org/10.1016/0140-6736(93)92876-U PMid:8105262
Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of Type 2 diabetes. Molecules. 2016; 21(10). https://doi.org/10.3390/molecules21101374 PMid:27754463 PMCid:PMC6274266
Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: The role of bioavailability. Nutrients. 2021. p. 13. https://doi.org/10.3390/nu13010273PMid:33477894 PMCid:PMC7833401
El-Demerdash FM, Yousef MI, Abou El-Naga NI. Biochemical study on the hypoglycemic effects of onion and garlic in alloxan-induced diabetic rats. Food Chem Toxicol. 2005; 43(1):57-63. https://doi.org/10.1016/j.fct.2004.08.012 PMid:15582196
Srinivasan K. Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. Int J Food Sci Nutr. 2005; 56(6):399-414. https://doi.org/10.1080/09637480500512872 PMid:16361181
Vessal M, Hemmati M, Vasei M. Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003; 135(3):357-64. https://doi.org/10.1016/S1532-0456(03)00140-6 PMid:12927910
Carson JF. Chemistry and biological properties of onions and garlic. Food Rev Int. 1987; 3(1-2):71-103. https://doi.org/10.1080/87559128709540808
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab. 2015; 12:1-20. https://doi.org/10.1186/s12986-015-0057-7 PMid:26705405 PMCid:PMC4690284
Eldin IM, Ahmed EM, Abd EH. Preliminary study of the clinical hypoglycemic effects of Allium cepa (red onion) in type 1 and type 2 diabetic patients. Environ Health Insights. 2010; 4:EHI-S5540. https://doi.org/10.4137/EHI.S5540 PMid:21079693 PMCid:PMC2978938
Kumar KS, Bhowmik D, Chiranjib B, Tiwari P. Allium cepa: A traditional medicinal herb and its health benefits. J Chem Pharm Res. 2010; 2(1):283-91.
Sasi M, Kumar S, Kumar M, Thapa S, Prajapati U, Tak Y, et al. Garlic (Allium sativum L.) bioactives and its role in alleviating oral pathologies. Antioxidants. 2021; 10(11). https://doi.org/10.3390/antiox10111847 PMid:34829718 PMCid:PMC8614839
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine. 2006; 13(9-10):624-9. https://doi.org/10.1016/j.phymed.2005.09.010 PMid:17085291
Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019; 8(7). https://doi.org/10.3390/foods8070246 PMid:31284512 PMCid:PMC6678835
Powolny AA, Singh SV. Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organ sulfur compounds. Cancer Lett. 2008; 269(2):305-14. https://doi.org/10.1016/j.canlet.2008.05.027 PMid:18579286 PMCid:PMC2562004
Torres-Palazzolo C, Ramirez D, Locatelli D, Manucha W, Castro C, Camargo A. Bioaccessibility and permeability of bioactive compounds in raw and cooked garlic. J Food Compos Anal. 2018; 70:49-53. https://doi.org/10.1016/j.jfca.2018.03.008
Diretto G, Rubio-Moraga A, Argandoña J, Castillo P, Gómez-Gómez L, Ahrazem O. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules. 2017; 22(8). https://doi.org/10.3390/molecules22081359 PMid:28825644 PMCid:PMC6152257
Beato VM, Orgaz F, Mansilla F, Montaño A. Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods Hum Nutr. 2011; 66:218-23. https://doi.org/10.1007/s11130-011-0236-2 PMid:21667145
Moisa C, Copolovici L, Bungau S, Pop G, Imbrea I, Lupitu A, et al. Wastes resulting from aromatic plants distillation-bio-sources of antioxidants and phenolic compounds with biological active principles. Farmacia. 2018; 66(1):289-95.
Das NN, Das A, Mukherjee AK. Structure of the D-galactan isolated from garlic (Allium sativum) bulbs. Carbohydr Res. 1977; 56(2):337-49. https://doi.org/10.1016/S0008-6215(00)83354-6 PMid:902266
Sumiyoshi H, Kanezawa A, Masamoto K, Harada H, Nakagami S, Yokota A, et al. Chronic toxicity test of garlic extract in rats. J Toxicol Sci. 1984; 9(1):61-75. https://doi.org/10.2131/jts.9.61 PMid:6471130
Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM, Mustafa T. Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot Essent Fatty Acids. 2000; 62(4):253-9. https://doi.org/10.1054/plef.2000.0152 PMid:10882191
Sumiyoshi H, Kanezawa A, Masamoto K, Harada H, Nakagami S, Yokota A, et al. Chronic toxicity test of garlic extract in rats. J Toxicol Sci. 1984; 9(1):61-75. https://doi.org/10.2131/jts.9.61 PMid:6471130
Liu CT, Sheen LY, Lii CK. Does garlic have a role as an antidiabetic agent? Mol Nutr Food Res. 2007; 51(11):1353-64. https://doi.org/10.1002/mnfr.200700082 PMid:17918164
Padiya R, Khatua TN, Bagul PK, Kuncha M, Banerjee SK. Garlic improves insulin sensitivity and associated metabolic syndromes in fructose fed rats. Nutr Metab. 2011; 8(1):1-8. https://doi.org/10.1186/1743-7075-8-53 PMid:21794123 PMCid:PMC3168415
Jain SK, Croad JL, Velusamy T, Rains JL, Bull R. Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP‐1, ICAM‐1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFκB, Akt, and Glut‐2 in livers of Zucker diabetic fatty rats. Mol Nutr Food Res. 2010; 54(9):1371-80. https://doi.org/10.1002/mnfr.200900177 PMid:20306473 PMCid:PMC3138725
Takase M, Zhao T, Zhang M, Chen Y, Liu H, Yang L, et al. An expatriate review of neem, jatropha, rubber and Karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sustain Energy Rev. 2015; 43:495-520. https://doi.org/10.1016/j.rser.2014.11.049
Girish K, Shankara BS. Neem-a green treasure. eJBio. 2008; 4(3):102-11.
Subapriya R, Nagini S. Medicinal properties of neem leaves: A review. Curr Med Chem Anti-Cancer Agents. 2005; 5(2):149-56. https://doi.org/10.2174/1568011053174828 PMid:15777222
Das L, Gunindro N, Ghosh R, Roy M, Debbarama A. Mechanism of action of Azadirachta indica Linn. (Neem) aqueous leaf extract as hypoglycaemic agent. Ind Med Gaz. 2014; 1:29-32.
Sarah R, Tabassum B, Idrees N, Hussain MK. Bio-active compounds isolated from neem tree and their applications. Natural Bio-active Compounds: Volume 1: Production and Applications. 2019. p. 509-28. https://doi.org/10.1007/978-981-13-7154-7_17
Singh D, Sharma D, Soni SL, Sharma S, Sharma PK, Jhalani A. A review on feedstocks, production processes, and yield for different generations of biodiesel. J Fuels. 2020. p. 262. https://doi.org/10.1016/j.fuel.2019.116553
Shrirangasami SR, Murugaragavan R, Rakesh SS, Ramesh PT. Chemistry behind in neem (Azadirachta indica) as medicinal value to living forms-A review. J Pharmacogn Phytochem. 2020;9(6):467-9. https://doi.org/10.22271/phyto.2020.v9.i6g.12936
Singh UP, Singh HB, Singh RB. The fungicidal effect of neem (Azadirachta indica) extracts on some soil-borne pathogens of gram (Cicer arietinum). J Mycol. 1980; 72(6):1077-93. https://doi.org/10.1080/00275514.1980.12021288
Dorababu D, Joshi MC, Kumar BG, Chaturvedi A, Goel RK. Effect of aqueous extract of neem (Azadirachta indica) leaves on offensive and defensive gastric mucosal factors in rats. Indian J Physiol Pharmacol. 2006; 50(3).
Kumar VS, Navaratnam V, Rajasekaran A, Nair N, Matharasi DS, Narasimhan S, et al. Isolation and characterization of glucosamine from Azadirachta indica leaves: An evaluation of immunostimulant activity in mice. Asian Pac J Trop Biomed. 2012; 2(3):S1561-7. https://doi.org/10.1016/S2221-1691(12)60453-5
Maithani A, Parcha V, Pant G, Dhulia I, Kumar D. Azadirachta indica (neem) leaf: A review. J Pharm Res. 2011; 4(6):1824-7.
Boeke SJ, Boersma MG, Alink GM, van Loon JJ, van Huis A, Dicke M, et al. Safety evaluation of neem (Azadirachta indica) derived pesticides. J Ethnopharmacol. 2004; 94(1):25-41. https://doi.org/10.1016/j.jep.2004.05.011 PMid:15261960
Kochhar A, Sharma N, Sachdeva R. Effect of supplementation of Tulsi (Ocimum sanctum) and Neem (Azadirachta indica) leaf powder on diabetic symptoms, anthropometric parameters and blood pressure of non insulin dependent male diabetics. Stud Ethno-Med. 2009; 3(1):5-9. https://doi.org/10.1080/09735070.2009.11886330
Dholi SK, Raparla R, Mankala SK, Nagappan K. In vivo antidiabetic evaluation of neem leaf extract in alloxan induced rats. J Appl Pharm Sci. 2011. p. 100-5.
Ramachandra CT, Rao PS. Processing of Aloe vera leaf gel: A review. Am J Agric Biol Sci. 2008; 3(2):502-10. https://doi.org/10.3844/ajabssp.2008.502.510
Surjushe A, Vasani R, Saple DG. Aloe vera: A short review. Indian J Dermatol. 2008; 53(4). https://doi.org/10.4103/0019-5154.44785 PMid:19882025 PMCid:PMC2763764
Zheng W, Wang SY. Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem. 2001; 49(11):5165-70. https://doi.org/10.1021/jf010697n PMid:11714298
Rajasekaran S, Sivagnanam K, Subramanian S. Mineral contents of Aloe vera leaf gel and their role on streptozotocin-induced diabetic rats. Biol Trace Elem Res. 2005; 108:185-95. https://doi.org/10.1385/BTER:108:1-3:185 PMid:16327071
Femenia A, Sánchez ES, Simal S, Rosselló C. Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydr Polym. 1999; 39(2):109-17. https://doi.org/10.1016/S0144-8617(98)00163-5
Jadhav AS, Patil OA, Kadam SV, Bhutkar MA. Review on Aloe vera is used in medicinal plant. Asian J Pharm Sci. 2020; 10(1):26-30. https://doi.org/10.5958/2231-5659.2020.00006.5
Moghaddasi MS, Res M. Aloe vera their chemicals composition and applications: A review. International Journal of Biological and Medical Research. 2011; 2(1):466-71.
Nghonjuyi NW, Tiambo CK, Taïwe GS, Toukala JP, Lisita F, Juliano RS, et al. Acute and sub-chronic toxicity studies of three plants used in Cameroonian ethnoveterinary medicine: Aloe vera (L.) Burm. f. (Xanthorrhoeaceae) leaves, Carica papaya L (Caricaceae) seeds or leaves, and Mimosa pudica L. (Fabaceae) leaves in Kabir chicks. J Ethnopharmacol. 2016; 178:40-9. https://doi.org/10.1016/j.jep.2015.11.049 PMid:26657577
Pothuraju R, Sharma RK, Onteru SK, Singh S, Hussain SA. Hypoglycemic and hypolipidemic effects of Aloe vera extract preparations: A review. Phytother Res. 2016; 30(2):200-7. https://doi.org/10.1002/ptr.5532 PMid:26666199
Yongchaiyudha S, Rungpitarangsi V, Bunyapraphatsara N, Chokechaijaroenporn O. Antidiabetic activity of Aloe vera L. juice. I. Clinical trial in new cases of diabetes mellitus. Phytomedicine. 1996; 3(3):241-3. https://doi.org/10.1016/S0944-7113(96)80060-2 PMid:23195077
Muñiz-Ramirez A, Perez RM, Garcia E, Garcia FE. Antidiabetic activity of Aloe vera leaves. J Evid Based Complementary Altern Med. 2020. https://doi.org/10.1155/2020/6371201 PMid:32565868 PMCid:PMC7267870
Kaur J, Kaur D, Singh H, Khan MU. Emblica officinalis: A meritocratic drug for treating various disorders. Indo Am J Pharm Res. 2013; 3(6).
Bariya AR. Shelf life assessment of cooked goat meat patties incorporated with amla fruit and amla seed coat extract at refrigerated storage (4±1ºC). Int J Agric Sci. 2016:0975-3710.
Majeed M, Bhat B, Jadhav AN, Srivastava JS, Nagabhushanam K. Ascorbic acid and tannins from Emblica officinalis Gaertn. Fruits A Revisit. J Agric Food Chem. 2009; 57(1):220-5. https://doi.org/10.1021/jf802900b PMid:19063633
Choudhary M, Grover K. Amla (Emblica officinalis L.) Oil. Fruit Oils: Chemistry and Functionality. 2019. p. 875-82. https://doi.org/10.1007/978-3-030-12473-1_48 PMCid:PMC6482757
Sharma A, Sharma MK, Kumar M. Modulatory role of Emblica officinalis fruit extract against arsenic induced oxidative stress in Swiss albino mice. Chem Biol Interact. 2009; 180(1):20-30. https://doi.org/10.1016/j.cbi.2009.01.012 PMid:19428342
Bansal J, Kumar N, Malviya R, Sharma PK. Hepatoprotective models and various natural product used in hepatoprotective agents: A review. Phcog Commn. 2014; 4(3). https://doi.org/10.5530/pc.2014.3.2
Akhtar MS, Ramzan A, Ali A, Ahmad M. Effect of Amla fruit (Emblica officinalis Gaertn) on blood glucose and lipid profile of normal subjects and type 2 diabetic patients. Int J Food Sci Nutr. 2011; 62(6):609-16. https://doi.org/10.3109/09637486.2011.560565 PMid:21495900
Chen TS, Liou SY, Wu HC, Tsai FJ, Tsai CH, Huang CY, et al. Efficacy of epigallocatechin-3-gallate and Amla (Emblica officinalis) extract for the treatment of diabetic-uremic patients. J Med Food. 2011; 14(7-8):718-23. https://doi.org/10.1089/jmf.2010.1195 PMid:21631363
Unde SB, Dhavane SS. In vitro free radical scavenging activity of ashgourd and its potential ability to treat several severe diseases. World J Pharm Res. 2022; 11(1). https://doi.org/10.20959/wjpr20221-22677
Doharey V, Kumar M, Upadhyay SK, Singh R, Kumari B. Pharmacognostical, physicochemical and pharmaceutical paradigm of ash gourd, Benincasa hispida (Thunb.) fruit. Plant Arch. 2021; 21(1):249-52. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.S1.041
Gupta P, Chikkala S, Kundu P. Ash gourd and its applications in the food, pharmacological and biomedical industries. Int J Veg Sci. 2021; 27(1):4453. https://doi.org/10.1080/19315260.2019.1699222
Sharma J, Chatterjee S, Kumar V, Variyar PS, Sharma A. Analysis of free and glycosidically bound compounds of ash gourd (Benincasa hispida): Identification of key odorants. Food Chem. 2010; 122(4):1327-32. https://doi.org/10.1016/j.2010.03.099
Amin MR, Shafiullah SM, Mondal E, Ahmed T. Toxicity and physiological effects of some plant extracts on fruit fly infesting ash gourd. SAARC J Agric. 2017; 15(2):125-35. https://doi.org/10.3329/sja.v15i2.35162
Katare C, Saxena S, Agrawal S, Joseph AZ, Subramani SK, Yadav D, et al. Lipid-lowering and antioxidant functions of bottle gourd (Lagenaria siceraria) extract in human dyslipidemia. J Evid Based Complementary Altern Med. 2014; 19(2):1128. https://doi.org/10.1177/2156587214524229 PMid:24647091
Selvakumar G, Shathirapathiy G, Jainraj R, Paul PY. Immediate effect of bitter gourd, ash gourd, Knol-khol juices on blood sugar levels of patients with type 2 diabetes mellitus: A pilot study. J Tradit Complement Med. 2017; 7(4):526-31. https://doi.org/10.1016/j.jtcme.2017.01.009 PMid:29034203 PMCid:PMC5634755
Tiwari AK. Revisiting “vegetables” to combat modern epidemic of imbalanced glucose homeostasis. Pharmacogn Mag. 2014; 10(Suppl 2):S207. https://doi.org/10.4103/0973-1296.133211 PMid:24991093 PMCid:PMC4078339
Baliga MS, Fernandes S, Thilakchand KR, D’souza P, Rao S. Scientific validation of the antidiabetic effects of Syzygium jambolanum DC (black plum), a traditional medicinal plant of India. J Altern Complement Med. 2013; 19(3):191-7. https://doi.org/10.1089/acm.2011.0752 PMid:23030429
Das G, Nath R, Das TA, Ağagündüz D, Yilmaz B, Capasso R, et al. Major bioactive compounds from java plum seeds: An investigation of its extraction procedures and clinical effects. Plants. 2023; 12(6). https://doi.org/10.3390/plants12061214 PMid:36986906 PMCid:PMC10057433
Jain MC, Seshadri TR. Anthocyanins of Eugenia jambolana fruits. Indian J Chem. 1975.
Miletić N, Mitrović O, Popović B, Nedović V, Zlatković B, Kandić M. Polyphenolic content and antioxidant capacity in fruits of plum (Prunus domestica L.) Cultivars “V aljevka” and “M ildora” as influenced by air drying. J Food Qual. 2013; 36(4):229-37. https://doi.org/10.1111/jfq.12035
Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983; 54:275-87. https://doi.org/10.1007/BF01234480 PMid:6667118
Rizvi MK, Rabail R, Munir S, Inam-Ur-Raheem M, Qayyum MM, Kieliszek M, et al. Astounding health benefits of jamun (Syzygiumcumini) toward metabolic syndrome. Molecules. 2022; 27(21):7184. https://doi.org/10.3390/molecules27217184 PMid:36364010 PMCid:PMC9654918
Singhal BK, Khan MA, Dhar A, Baqual FM, Bindroo BB. Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. J Fruit Ornam Plant Res. 2010; 18(18):83-99.
Zhang H, Ma ZF, Luo X, Li X. Effects of mulberry fruit (Morus alba L.) consumption on health outcomes: A mini-review. Antioxid. 2018; 7(5). https://doi.org/10.3390/antiox7050069 PMid:29883416 PMCid:PMC5981255
Sadia H, Ahmad M, Sultana S, Abdullah AZ, Teong L, Zafar M, et al. Nutrient and mineral assessment of edible wild fig and mulberry fruits. Fruits. 2014; 69(2):159-66. https://doi.org/10.1051/fruits/2014006
Li Y-G, JI D-F, Zhong S. Hybrid of 1-de-oxynojirimycin and polysaccharide from mulberry leaves treat diabetes mellitus by activating PDX-1/insulin-1 signaling pathway and regulating the expression of glucokinase, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in alloxan induced diabetic mice. J Ethnopharmacol. 2011; 134(3):961-70. https://doi.org/10.1016/j.jep.2011.02.009 PMid:21333726
Sharma SK, Zote KK. Mulberry-A multipurpose tree species for varied climate. Range Management and Agroforestry. 2010; 31(2):97-101.
Eyduran SP, Ercisli S, Akin M, Beyhan O, Geçer MK, Eyduran E, et al. Organic acids, sugars, vitamin C, antioxidant capacity, and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. J Appl Bot Food Qual. 2015. p. 88.
Liang L, Wu X, Zhu M, Zhao W, Li F, Zou Y, et al. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn Mag. 2012; 8(31). https://doi.org/10.4103/0973-1296.99287 PMid:23060696 PMCid:PMC3466457
Krishna PG, Sivakumar TR, Jin C, Li SH, Weng YJ, Yin J, et al. Antioxidant and hemolysis protective effects of polyphenol-rich extract from mulberry fruits. Pharmacogn Mag. 2018; 14(53). https://doi.org/10.4103/pm.pm49116 PMid:29576709 PMCid:PMC5858229
Asai A, Nakagawa K, Higuchi O, Kimura T, Kojima Y, Kariya J, et al. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J Diabetes Investig. 2011; 2(4):318-23. https://doi.org/10.1111/j.2040-1124.2011.00101.x PMid:24843505 PMCid:PMC4014974
Kumar A. A systemic review of tulsi (Ocimum tenuiflorum or Ocimum sanctum): Phytoconstituents, ethnobotanical and pharmacological profile. Research Journal of Pharmacognosy and Phytochemistry. 2023; 15(2):179-88. https://doi.org/10.52711/0975-4385.2023.00028
Anbarasu K, Vijayalakshmi G. Improved shelf life of protein‐rich tofu using Ocimum sanctum (tulsi) extracts to benefit Indian rural population. J Food Sci. 2007; 72(8): M300-5. https://doi.org/10.1111/j.1750-3841.2007.00487.x PMid:17995609
Singh A, Singh A, Singh J, Singh MP. Phytochemical analysis and antimicrobial activity of the leaves of Ocimum sanctum. Steroids. 2020; 1:0-14.
Devi PU, Ganasoundari A, Vrinda B, Srinivasan KK, Unnikrishnan MK. Radiation protection by the Ocimum flavonoids orientin and vicenin: Mechanisms of action. Radiat Res. 2000; 154(4):455-60. https://doi.org/10.1667/0033-7587(2000)154[0455:RPBTOF]2.0.CO;2 PMid:11023610
Bhadra P, Sethi L. A review paper on the tulsiplant (Ocimum sanctum). Indian J Nat Sci. 2020; 10(60):20854-60.
Gautam MK, Goel RK. Toxicological study of Ocimum sanctum Linn leaves: hematological, biochemical, and histopathological studies. J Toxicol. 2014; 2014. https://doi.org/10.1155/2014/135654 PMid:24616736 PMCid:PMC3927567
Pattanayak P, Behera P, Das D, Panda SK. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn Rev. 2010; 4(7). https://doi.org/10.4103/0973-7847.65323 PMid:22228948 PMCid:PMC3249909
Hannan JM, Marenah L, Ali L, Rokeya B, Flatt PR, Abdel-Wahab YH. Ocimum sanctum leaf extracts stimulate insulin secretion from perfused pancreas, isolated islets and clonal pancreatic β-cells. J Endocrinol. 2006; 189(1):127-36. https://doi.org/10.1677/joe.1.06615 PMid:16614387
Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol. 2002; 81(1):81-3. https://doi.org/10.1016/s0378-8741(02)00059-4 Pmid: 12020931