The Nexus between Polyphenols and Gut Microbiota and Their Interplay in Human Health: A Brief Review
DOI:
https://doi.org/10.18311/jnr/2024/35974Keywords:
Dietary Intake, Functional Food, Gut Microbes, Human Health, Polyphenols, PhytochemicalsAbstract
Polyphenols are a broad class of naturally occurring substances in plants and have drawn extensive attention as they may possess promising health-promoting benefits. Recently, gut microbiota and polyphenol interactions have been directly linked to the well-being of humans. The classification, sources, and interactions of polyphenols with the gut microbiota are presented in this review, highlighting their key health benefits in humans. Polyphenols undergo complex transformations within the gastrointestinal tract and interact with the gut microbiota, a varied collection of bacteria living in the digestive system. The interactions substantially influence the composition, functioning, metabolic activity, and gut microbiota diversity. Research indicates that polyphenols may possess prebiotic-like properties, favouring Lactobacilli and Bifidobacteria growth, among other beneficial bacteria. The fermentation of polyphenols is aided by these bacteria, which produce bioactive metabolites that may improve human health and well-being in various ways. Moreover, the alteration of gut microbiology caused by polyphenols has been linked to improvements in several health outcomes, including enhanced metabolic health, fortified immunological function, and a decreased susceptibility to chronic conditions like heart disease and certain forms of cancer. In summary, the intriguing relationship between polyphenols and gut microbiota has significant health implications for humans. Understanding these relationships can open the door to tailored dietary treatments and the development of functional foods to support a balanced gut microbiota and general well-being.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 K. J. Albin, P. N. Nimith Noble, N. Prem Kumar, Khalid Imran (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-07-18
Published 2024-10-07
References
Prabhu S, Molath A, Choksi H, Kumar S, Mehra R. Classifications of polyphenols and their potential application in human health and diseases. International Journal of Physiology, Nutrition and Physical Education. 2021; 6(1):293-301. https://doi.org/10.22271/journalofsport.2021.v6.i1e.2236
Sharma P, Roy M, Roy B. A review on the influence of floral biology, pollination efficiency and conservation strategies of endangered medicinal plant, Rauvolfia serpentina (L.) Benth. ex Kurz. Annals of Phytomedicine: An International Journal. 2022; 11(1):86-98. https://doi.org/10.54085/ap.2022.11.1.9
Chellammal HSJ. Fruits that heal: Biomolecules and novel therapeutic agents. Annals of Phytomedicine: An International Journal. 2022; 11(1):7-14. https://doi.org/10.54085/ap.2022.11.1.2
Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity. 2009; 2(5):270-8. https://doi.org/10.4161/oxim.2.5.9498 PMid:20716914 PMCid: PMC2835915
Chauhan D, Kumar K, Kumar S, Kumar H. Effect of incorporation of oat flour on nutritional and organoleptic characteristics of bread and noodles. Current Research in Nutrition and Food Science Journal. 2018; 6(1):148-56. https://doi.org/10.12944/CRNFSJ.6.1.17
Cheynier V. Phenolic compounds: from plants to foods. Phytochemistry Reviews. 2012; 11(2-3):153-77. https://doi.org/10.1007/s11101-012-9242-8
Mitra S, Tareq AM, Das R, Emran TB, Nainu F, Chakraborty AJ, et al. Polyphenols: First evidence in the synergism and bioactivities. Food Reviews International. 2022; 39(7):1-23. https://doi.org/10.1080/87559129.2022.2026376
Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, et al. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International. 2019; 102(5):1397-400. https://doi.org/10.5740/jaoacint.19-0133 PMid:31200785
Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. European Journal of Clinical Nutrition. 2010; 64(S3):S112-20. https://doi.org/10.1038/ejcn.2010.221 PMid:21045839
Singh A, Holvoet S, Mercenier A. Dietary polyphenols in the prevention and treatment of allergic diseases. Clinical and Experimental Allergy. 2011; 41(10):1346-59.https://doi.org/10.1111/j.1365-2222.2011.03773.x https://doi.org/10.1111/j.1365-2222.2011.03773.x PMid:21623967
Lecour S, Lamont KT. Natural polyphenols and cardioprotection. Mini-Reviews in Medicinal Chemistry. 2011; 11(14):1191-9. https://doi.org/10.2174/138955711804586766 PMid:22070680
Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: A mini-review. Frontiers in Nutrition. 2018; 5(87):370438. https://doi.org/10.3389/fnut.2018.00087 PMid:30298133 PMCid: PMC6160559
Mounika M, Hymavathi TV. Nutrient and phytonutrient quality of Nutri cereals incorporated flour mix suitable for diabetics. Ann Phytomed. 2021; 10(1):132-40. https://doi.org/10.21276/ap.2021.10.1.14
Sharma N, Sarwat M. Functional foods for better health and weight loss. Annals of Phytomedicine: An International Journal. 2022; 11(2)114-21. https://doi.org/10.54085/ap.2022.11.2.12
Rasouli H, Farzaei MH, Khodarahmi R. Polyphenols and their benefits: A review. International Journal of Food Properties. 2017; 20(Sup2):1-42. https://doi.org/10.1080/10942912.2017.1354017
Pandey KB, Rizvi SI. Plant polyphenols in healthcare and ageing. Springer eBooks. 2017. p. 267-82. https://doi.org/10.1007/978-3-319-67625-8_11
Ozcan T, Akpinar-Bayizit A, Yilmaz-Ersan L, Delikanli B. Phenolics in human health. International Journal of Chemical Engineering and Applications. 2014; 5(5):393-6. https://doi.org/10.7763/IJCEA.2014.V5.416
Shahidi F, Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences. 2018; 19(6):1573. https://doi.org/10.3390/ijms19061573 PMid:29799460 PMCid: PMC6032343
Gupta S, Bishnoi J, Kumar N, Kumar H, Nidheesh T. Terminalia arjuna (Roxb.) Wight andArn.: Competent source of bioactive components in functional food and drugs. ~ 223 ~ The Pharma Innovation Journal. 2018; 7(3):223-31.
Teixeira J, Gaspar A, Garrido EM, Garrido J, Borges F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Research International. 2013; 2013:1-11. https://doi.org/10.1155/2013/251754 PMid:23956973 PMCid: PMC3730368
Chou YC, Ho CT, Pan MH. Stilbenes: Chemistry and molecular mechanisms of anti-obesity. Current Pharmacology Reports. 2018; 4(3):202-9. https://doi.org/10.1007/s40495-018-0134-5
Bavaresco L, Costanza Fregoni. Physiological role and molecular aspects of grapevine stilbenic compounds. Springer eBooks. 2001. p. 153-82. https://doi.org/10.1007/978-94-017-2308-4_6
Dubrovina AS, Kiselev KV. Regulation of stilbene biosynthesis in plants. Planta. 2017; 246(4):597-623. https://doi.org/10.1007/s00425-017-2730-8 https://doi.org/10.1007/s00425-017-2730-8 PMid:28685295
Thomasset SC, Berry DP, Garcea G, Marczylo T, Steward WP, Gescher AJ. Dietary polyphenolic phytochemicalspromising cancer chemopreventive agents in humans? A review of their clinical properties. International Journal of Cancer. 2006; 120(3):451-8. https://doi.org/10.1002/ijc.22419 PMid:17131309
Szkudelska K, Szkudelski T. Resveratrol, obesity and diabetes. European Journal of Pharmacology. 2010; 635(1-3):1-8. https://doi.org/10.1016/j.ejphar.2010.02.054 PMid:20303945
Petrovski G, Gurusamy N, Das DK. Resveratrol in cardiovascular health and disease. Annals of the New York Academy of Sciences. 2011; 1215(1):22-33. https://doi.org/10.1111/j.1749-6632.2010.05843.x PMid:21261638
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal. 2013; 2013(162750):1-16. https://doi.org/10.1155/2013/162750 PMid:24470791 PMCid: PMC3891543
Pietta PG. Flavonoids as antioxidants. Journal of Natural Products. 2000; 63(7):1035-42. https://doi.org/10.1021/np9904509 PMid:10924197
Guven H, Arici A, Simsek O. Flavonoids in our foods: A short review. Journal of Basic and Clinical Health Sciences. 2019; 3(2):96-106. https://doi.org/10.30621/jbachs.2019.555
Lewis N, Davin LB. Lignans: Biosynthesis and function. Elsevier eBooks. 1999. p. 639-712. https://doi.org/10.1016/B978-0-08-091283-7.00027-8
Imai T, Nomura M, Fukushima K. Evidence for the involvement of the phenylpropanoid pathway in the biosynthesis of the norlignan agatharesinol. Journal of Plant Physiology. 2006; 163(5):483-7. https://doi.org/10.1016/j.jplph.2005.08.009 PMid:16473652
Pan J, Chen S, Yang M, Wu J, Jari Sinkkonen, Zou K. An update on lignans: natural products and synthesis. Natural Product Reports. 2009; 26(10):1251-1. https://doi.org/10.1039/b910940d PMid:19779640
Whiting DA. Ligans and Neolignans. Natural Product Reports. 1985; 2(3):191. https://doi.org/10.1039/np9850200191
Zhao W. Introduction to natural products chemistry. CRC Press eBooks. CRC Press. 2011. https://doi.org/10.1201/b11017
Teponno RB, Kusari S, Spiteller M. Recent advances in research on lignans and neolignans. Natural Product Reports. 2016; 33(9):1044-92. https://doi.org/10.1039/C6NP00021E PMid:27157413
Durazzo A. Lignans. In: Leo MLN, Janet AGU, editors. Phenolic compounds in food: Characterization and analysis (food analysis and properties). Boca Raton, FL, USA: CRC Press. 2018. https://doi.org/10.1201/9781315120157-11
Pizzi A. Advanced wood adhesive technology. CRC Press eBooks. CRC Press. 1994. https://doi.org/10.1016/B978-0-08-045316-3.00008-9 PMCid: PMC7155708
Khanbabaee K, van Ree T. ChemInform Abstract: Tannins: Classification and Definition. ChemInform. 2010; 33(13). https://doi.org/10.1002/chin.200213268
Sharma KP. Tannin degradation by phytopathogen’s tannase: A Plant’s defence perspective. Biocatalysis and Agricultural Biotechnology. 2019; 21:101342. https://doi.org/10.1016/j.bcab.2019.101342
Haslam E. The metabolism of gallic acid and hexahydroxydiphenic acid in higher plants. Fortschritte der Chemie Organischer Naturstoffe. 1982; 41:1-46. https://doi.org/10.1007/978-3-7091-8656-5_1
Hillis WE. Biosynthesis of tannins. Elsevier eBooks. 1985; 325-47. https://doi.org/10.1016/B978-0-12-347880-1.50017-9
Filgueira D, Moldes D, Fuentealba C, García DE. Condensed tannins from pine bark: A novel wood surface modifier assisted by laccase. Industrial Crops and Products. 2017; 103:185-94. https://doi.org/10.1016/j.indcrop.2017.03.040
Pizzi A. Tannins: Major sources, properties and applications. Monomers, Polymers and Composites from Renewable Resources. 2008; 179-99. https://doi.org/10.1016/B978-0-08-045316-3.000 08-9 PMCid: PMC7155708
Vinson JA, Su X, Zubik L, Bose P. Phenol antioxidant quantity and quality in foods: fruits. Journal of Agricultural and Food Chemistry. 2001; 49(11):5315-21. https://doi.org/10.1021/jf0009293 PMid:11714322
Tomás‐Barberán FA, Clifford MN. Dietary hydroxybenzoic acid derivatives - nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture. 2000; 80(7):1024-32. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1024::AID-JSFA567>3.0.CO;2-S
Sharma N, Tiwari N, Vyas M, Khurana N, Muthuraman A, Utreja P. An overview of therapeutic effects of vanillic acid. Plant Arch. 2020; 20(2):3053-9.
Kaur J, Gulati M, Singh SK, Kuppusamy G, Kapoor B, Mishra V, et al. Discovering the multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends in Food Science and Technology. 2022; 122:187-200. https://doi.org/10.1016/j.tifs.2022.02.023
Juurlink BH, Azouz HJ, Aldalati AM, AlTinawi BM, Ganguly P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutrition Journal. 2014; 13(1). https://doi.org/10.1186/1475-2891-13-63 PMid:24943896 PMCid: PMC4074389
Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’hiri N, García-Lobato P, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database: The Journal of Biological Databases and Curation. 2013; 2013:bat070. https://doi.org/10.1093/database/bat070 PMid:24103452 PMCid: PMC3792339
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, et al. Neurobiological effects of gallic acid: current perspectives. Chinese Medicine. 2023; 18(1):27. https://doi.org/10.1186/s13020-023-00735-7 PMid:36918923 PMCid: PMC10015939
Daglia M, Di Lorenzo A, Nabavi SF, Talas ZS, Nabavi SM. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! Current Pharmaceutical Biotechnology. 2014; 15(4):362-72. https://doi.org/10.2174/138920101504140825120737 PMid:24938889
Joye IJ. Acids and bases in food. Encyclopedia of Food Chemistry. 2019. p. 1-9. https://doi.org/10.1016/B978-0-08-100596-5.21582-5 PMid:31151722
del Olmo A, Calzada J, Nuñez M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Critical Reviews in Food Science and Nutrition. 2015; 57(14):3084-103. https://doi.org/10.1080/10408398.2015.1087964 PMid:26587821
El-Seedi HR, Taher EA, Sheikh BY, Anjum S, Saeed A, AlAjmi MF, et al. Hydroxycinnamic acids: Natural sources, biosynthesis, possible biological activities, and roles in Islamic medicine. Studies in Natural Products Chemistry. 2018; 269-92. https://doi.org/10.1016/B978-0-444-64068-0.00008-5
Adisakwattana S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients. 2017; 9(2):163. https://doi.org/10.3390/nu9020163 PMid:28230764 PMCid: PMC5331594
Guzman J. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014; 19(12):19292-349. https://doi.org/10.3390/molecules191219292 PMid:25429559 PMCid: PMC6271800
Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry. 2022; 383:132531. https://doi.org/10.1016/j.foodchem.2022.132531 PMid:35413752
Abed SS, Kiranmayi P, Imran K, Lateef SS. Gas Chromatography-Mass Spectrometry (GC-MS) metabolite profiling of Citrus limon (L.) Osbeck juice extract was evaluated for its antimicrobial activity against Streptococcus mutans. Cureus. 2023; 15(1):e33585. https://doi.org/10.7759/cureus.33585
Koushki M, Amiri-Dashatan N, Ahmadi N, Abbaszadeh HA, Rezaei-Tavirani M. Resveratrol: A miraculous natural compound for diseases treatment. Food Science and Nutrition. 2018; 6(8):2473-90. https://doi.org/10.1002/fsn3.855 PMid:30510749 PMCid: PMC6261232
Nadeem M, Taj Khan I, Khan F, Shah AM. Lignans and flavonolignans. In: Recent advances in natural products analysis. 2020; 98-116.
Álvarez-Caballero JM, Coy-Barrera E. Lignans. Elsevier eBooks. 2022. p. 387-416. https://doi.org/10.1016/B978-0-12-819096-8.00050-1
Martinez K, Mackert J, McIntosh M. Polyphenols and intestinal health. Nutrition and Functional Foods for Healthy Aging. 2017. p. 191-210. https://doi.org/10.1016/B978-0-12-805376-8.00018-6
Amarowicz R, Janiak M. Hydrolysable Tannins. Encyclopedia of Food Chemistry. 2019. p. 337-43. https://doi.org/10.1016/B978-0-08-100596-5.21771-X
Jandhyala SM. Role of the normal gut microbiota. World Journal of Gastroenterology. 2015; 21(29):8787. https://doi.org/10.3748/wjg.v21.i29.8787 PMid:26269668 PMCid: PMC4528021
Thursby E, Juge N. Introduction to the human gut microbiota. Biochemical Journal. 2017; 474(11):1823-36. https://doi.org/10.1042/BCJ20160510 PMid:28512250 PMCid: PMC5433529
Sumathi S, Suganya K, Swathi K, Sudha B, Sneha S. Current understanding of gut microbiota in tackling COVID-19. Annals of Phytomedicine: An International Journal. 2021; 10Sp-Issue1(COVID-19): S4-S12. https://doi.org/10.21276/ap.covid19.2021.10.1.15
Wang X, Qi Y, Zheng H. Dietary polyphenol, gut microbiota, and health benefits. Antioxidants. 2022; 11(6):1212. https://doi.org/10.3390/antiox11061212 PMid:35740109 PMCid: PMC9220293
Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, et al. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International. 2015; 2015:e850902. https://doi.org/10.1155/2015/850902 PMid:25793210 PMCid: PMC4352430
Rajha HN, Paule A, Aragonès G, Barbosa M, Caddeo C, Debs E, et al. Recent advances in research on polyphenols: Effects on microbiota, metabolism, and health. Molecular Nutrition and Food Research. 2021; 66(1):2100670. https://doi.org/10.1002/mnfr.202100670 PMid:34806294
Zhao Y, Jiang Q. Roles of the polyphenol-gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer. Advances in Nutrition. 2020; 12(2):546-65. https://doi.org/10.1093/advances/nmaa104 PMid:32905583 PMCid: PMC8009754
Sánchez-Patán F, Cueva C, Monagas M, Walton GE, Gibson M. GR, Quintanilla-López JE, et al. In vitro fermentation of a red wine extract by human gut microbiota: Changes in microbial groups and formation of phenolic metabolites. Journal of Agricultural and Food Chemistry. 2012; 60(9):2136-47. https://doi.org/10.1021/jf2040115 PMid:22313337
Wu T, Chu X, Cheng Y, Tang S, Zogona D, Pan S, et al. Modulation of gut microbiota by Lactobacillus casei fermented raspberry juice in vitro and in vivo. Foods. 2021; 10(12):3055. https://doi.org/10.3390/foods10123055 PMid:34945605 PMCid: PMC8702086
Zhou L, Wang W, Huang J, Ding Y, Pan Z, Zhao Y, et al. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota. Food and Function. 2016; 7(4):1959-67. https://doi.org/10.1039/C6FO00032K PMid:26980065
Bialonska D, Ramnani P, Kasimsetty SG, Muntha KR, Gibson GR, Ferreira D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. International Journal of Food Microbiology. 2010; 140(2-3):175-82. https://doi.org/10.1016/j.ijfoodmicro.2010.03.038 PMid:20452076
Wang J, Chen Y, Hu X, Feng F, Cai L, Chen F. Assessing the effects of ginger extract on polyphenol profiles and the subsequent impact on the faecal microbiota by simulating digestion and fermentation in vitro. Nutrients. 2020; 12(10):3194. https://doi.org/10.3390/nu12103194 PMid:33086593 PMCid: PMC7650818
Sost MM, Ahles S, Verhoeven J, Verbruggen S, Stevens Y, Venema K. A citrus fruit extract high in polyphenols beneficially modulates the gut microbiota of healthy human volunteers in a validated in vitro model of the colon. Nutrients. 2021; 13(11):3915. https://doi.org/10.3390/nu13113915 PMid:34836169 PMCid: PMC8619629
Orso G, Solovyev M, Facchiano S, Evgeniia Tyrikova, Sateriale D, Kashinskaya EN, et al. Chestnut shell tannins: Effects on intestinal inflammation and dysbiosis in zebrafish. Animals. 2021; 11(6):1538-8. https://doi.org/10.3390/ani11061538 PMid:34070355 PMCid: PMC8228309
Li X, Yang L, Xu M, Qiao G, Li C, Lin L, et al. Smilax china L. polyphenols alleviate obesity and inflammation by modulating gut microbiota in high fat/high sucrose diet-fed C57BL/6J mice. Journal of Functional Foods. 2021; 77:104332. https://doi.org/10.1016/j.jff.2020.104332
Kafantaris I, Basiliki Kotsampasi, Christodoulou V, Eleana Kokka, Paraskevi Kouka, Zoi Terzopoulou, et al. Grape pomace improves the antioxidant capacity and faecal microflora of lambs. Journal of Animal Physiology and Animal Nutrition. 2016; 101(5). https://doi.org/10.1111/jpn.12569 PMid:27753147
Zhao L, Zhang Q, Ma W, Tian F, Shen H, Zhou M. A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food and Function. 2017; 8(12):4644-56. https://doi.org/10.1039/C7FO01383C PMid:29152632
Cladis DP, Abigayle M.R. Simpson, Cooper KJ, Nakatsu CH, Ferruzzi MG, Weaver CM. Blueberry polyphenols alter gut microbiota and phenolic metabolism in rats. Food and Function. 2021; 12(6):2442-56. https://doi.org/10.1039/D0FO03457F PMid:33629093 PMCid: PMC8011555
Molan AL, Liu Z, Plimmer G. Evaluation of the effect of blackcurrant products on gut microbiota and on markers of risk for colon cancer in humans. Phytotherapy Research.2013; 28(3):416-22. https://doi.org/10.1002/ptr.5009 PMid:23674271
Tzounis X, Rodriguez-Mateos A, Vulevic J, Gibson GR, Kwik-Uribe C, Spencer JP. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American Journal of Clinical Nutrition. 2010; 93(1):62-72. https://doi.org/10.3945/ajcn.110.000075 PMid:21068351
Espín JC, González-Sarrías A, Tomás-Barberán FA. The gut microbiota: A key factor in the therapeutic effects of (poly) phenols. Biochemical Pharmacology. 2017; 139:82-93. https://doi.org/10.1016/j.bcp.2017.04.033 PMid:28483461
Shah SR, Alweis R, Najim NI, Dharani AM, Jangda MA, Shahid M, Kazi AN, Shah SA. Use of dark chocolate for diabetic patients: A review of the literature and current evidence. Journal of Community Hospital Internal Medicine Perspectives. 2017; 7(4):218-21. https://doi.org/10.1080/20009666.2017.1361293 PMid:29181133 PMCid: PMC5699188
Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco-2 cells. FEBS Letters. 2005; 579(7):1653-7. https://doi.org/10.1016/j.febslet.2004.12.099 PMid:15757656
Pandurangan AK, Mohebali N, Mohd. Esa N, Looi CY, Ismail S, Saadatdoust Z. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: Possible mechanisms. International Immunopharmacology. 2015; 28(2):1034-43. https://doi.org/10.1016/j.intimp.2015.08.019 PMid:26319951
Yang K, Zhang L, Liao P, Xiao Z, Zhang F, Sindaye D, et al. Impact of gallic acid on gut health: Focus on the gut microbiome, immune response, and mechanisms of action. Frontiers in Immunology. 2020; 11. https://doi.org/10.3389/fimmu.2020.580208 PMid:33042163 PMCid: PMC7525003
Li Y, Xie Z, Gao T, Li L, Chen Y, Xiao D, et al. A holistic view of gallic acid-induced attenuation in colitis based on microbiome-metabolomics analysis. Food and Function. 2019; 10(7):4046-61. https://doi.org/10.1039/C9FO00213H PMid:31225554
Coelho LP, Kultima JR, Costea PI, Fournier C, Pan Y, Czarnecki-Maulden G, et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome. 2018; 6(1). https://doi.org/10.1186/s40168-018-0450-3 PMid:29669589 PMCid: PMC5907387
Yang K, Deng X, Jian S, Zhang M, Wen C, Xin Z, et al. Gallic acid alleviates gut dysfunction and boosts immune and antioxidant activities in puppies under environmental stress based on microbiome-metabolomics analysis. Frontiers in Immunology. 2022; 12. https://doi.org/10.3389/fimmu.2021.813890 PMid:35095912 PMCid: PMC8795593
Lima ACD, Cecatti C, Fidélix MP, Adorno MAT, Sakamoto IK, Cesar TB, et al. Effect of daily consumption of orange juice on the levels of blood glucose, lipids, and gut microbiota metabolites: Controlled clinical trials. Journal of Medicinal Food. 2019; 22(2):202-10. https://doi.org/10.1089/jmf.2018.0080 PMid:30638420
Surai PF. Polyphenol compounds in the chicken/animal diet: from the past to the future. Journal of Animal Physiology and Animal Nutrition. 2013; 98(1):19-31. https://doi.org/10.1111/jpn.12070 PMid:23527581
Zhang C, Zhao XH, Yang L, Chen XY, Jiang RS, Jin SH, et al. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poultry Science. 2017; 96(12):4325-32. https://doi.org/10.3382/ps/pex266 PMid:29053872
Khampeerathuch T, Mudsak A, Srikok S, Vannamahaxay S, Chotinun S, Chuammitri P. Differential gene expression in heterophils isolated from commercial hybrid and Thai indigenous broiler chickens under quercetin supplementation. Journal of Applied Animal Research. 2017; 46(1):804-12. https://doi.org/10.1080/09712119.2017.1405814
Mattio LM, Dallavalle S, Musso L, Filardi R, Franzetti L, Pellegrino L, et al. Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens. Scientific Reports. 2019; 9(1). https://doi. org/10.1038/s41598-019-55975-1 PMid:31862939 PMCid: PMC6925292
Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition. 2015; 54(3):325-41. https://doi.org/10.1007/s00394-015-0852-y PMid:25672526 PMCid: PMC4365176
Gu Y, Zhang Y, Li M, Huang Z, Jiang J, Chen Y, et al. Ferulic acid ameliorates atherosclerotic injury by modulating gut microbiota and lipid metabolism. Frontiers in Pharmacology. 2021; 12. https://doi.org/10.3389/fphar.2021.621339 PMid:33841148 PMCid: PMC8026864
Guo J, Han X, Zhan J, You Y, Huang W. Vanillin alleviates high-fat diet-induced obesity and improves the gut microbiota composition. Frontiers in Microbiology. 2018; 9. https://doi.org/10.3389/fmicb.2018.02733 PMid:30483238 PMCid: PMC6243071
Jimenez-Garcia SN, Guevara-Gonzalez RG, Miranda-Lopez R, Feregrino-Perez AA, Torres-Pacheco I, Vazquez-Cruz MA. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Research International. 2013; 54(1):1195-207. https://doi.org/10.1016/j.foodres.2012.11.004
Vendrame S, Del Bo’ C, Ciappellano S, Riso P, Klimis-Zacas D. Berry fruit consumption and metabolic syndrome. Antioxidants. 2016; 5(4):34. https://doi.org/10.3390/antiox5040034 PMid:27706020 PMCid: PMC5187532
Bouyahya A, Omari NE, El Hachlafi N, Jemly ME, Hakkour M, Balahbib A, et al. Chemical compounds of berry-derived polyphenols and their effects on gut microbiota, inflammation, and cancer. Molecules (Basel, Switzerland). 2022; 27(10):3286. https://doi.org/10.3390/molecules27103286 PMid:35630763 PMCid: PMC9146061
Xiang Q, Liu Y, Wu Z, Wang R, Zhang X. New hints for improving sleep: Tea polyphenols mediate gut microbiota to regulate circadian disturbances. Food Frontiers. 2023; 4(1):47-59. https://doi.org/10.1002/fft2.199
Yan R, Ho CT, Zhang X. Modulatory effects in circadian-related diseases via the reciprocity of tea polyphenols and intestinal microbiota. Food Science and Human Wellness. 2022; 11(3):494-501. https://doi.org/10.1016/j. fshw.2021.12.007
Zhang Y, Cheng L, Liu Y, Wu Z, Weng P. The intestinal microbiota links tea polyphenols with the regulation of mood and sleep to improve immunity. Food Reviews International. 2023; 39(3):1485-98. https://doi.org/10.1080/87559129.2021.1934007
Xie Y, Wu Z, Qian Q, Yang H, Ma J, Luan W, Shang S, Li X. Apple polyphenol extract ameliorates sugary-diet-induced depression-like behaviours in male C57BL/6 mice by inhibiting the inflammation of the gut-brain axis. Food and Function. 2024; 15(6):2939-59. https://doi.org/10.1039/D3FO04606K PMid:38406886
Zhou P, Feng P, Liao B, Fu L, Shan H, Cao C, et al. Role of polyphenols in remodelling the host gut microbiota in polycystic ovary syndrome. Journal of Ovarian Research. 2024; 17(1):69. https://doi.org/10.1186/s13048-024-01354-y PMid:38539230 PMCid: PMC10967125
Dong L, Qin C, Li Y, Wu Z, Liu L. Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota. Food Bioscience. 2022; 50:101946. https://doi.org/10.1016/j.fbio.2022.101946
Huang G, Khan R, Zheng Y, Lee PC, Li Q, Khan I. Exploring the role of gut microbiota in advancing personalized medicine. Frontiers in Microbiology. 2023; 14:1274925. https://doi.org/10.3389/fmicb.2023.1274925 PMid:38098666 PMCid: PMC10720646
Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017; 356(6344):eaag2770. https://doi.org/10.1126/science.aag2770 PMid:28642381 PMCid: PMC5534341
Ryu G, Kim H, Koh A. Approaching precision medicine by tailoring the microbiota. Mammalian Genome. 2021; 32:206-22. https://doi.org/10.1007/s00335-021-09859-3 PMid:33646347