Effect of Phyto Constitutes of Ayurveda and Siddha Herbs on SARS-CoV-2/CoVID-19 Management by Modulating the Human Gut Microbiome

Jump To References Section

Authors

  • Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu ,IN
  • Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu ,IN
  • Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620024, Tamil Nadu ,IN
  • Department of Yoga, Central University of Rajasthan, Ajmer – 305817, Rajasthan ,IN
  • Department of Yoga, Central University of Rajasthan, Ajmer – 305817, Rajasthan ,IN

DOI:

https://doi.org/10.18311/jnr/2024/36023

Keywords:

Ayurveda, Co-infections, COVID-19, Human Gut Microbiota, Siddha

Abstract

The therapeutic plants used in Ayurveda and Siddha medicine primarily function as immunomodulators to combat viral infection. The majority of the Indian states adopted an integrative approach to the treatment strategy for COVID-19 infection during the COVID-19 outbreak. A large percentage of Indians consume Ayurvedic and Siddha herbs as preventative medication or immune boosters during the COVID outbreak. ACE-2 receptor, Mpro, Nsp15, endoribonuclease, ACE-2-RBD interface, RBD complex, helicase inhibitors, and ACE-2-RBD interface are the main targets of the phytochemicals of medicinal plants, which also have the potential to limit their action and lower infection rates. The phytonutrients also preserve the permeability of the gut epithelial membrane and improve gut barrier proteins including occludin, Zo-1, and claudin. The phytonutrients also help probiotic bacteria flourish, such as Faecalibacterium, Rikenellaceae, Lactobacillus and Lachnospiraceae, which may lower proinflammatory cytokines and improve immunological function. A small number of opportunistic bacteria, such as Pseudomonas aeruginosa and Klebsiella pneumonia, co-infect with the SARS-CoV-2 virus and increase the frequency of hospital stays and severity of the illness. The co-infections or secondary infections may be reduced by the antibacterial and anti-inflammatory activities of phytochemicals.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-10-07

How to Cite

Das, M., Thajuddin, N., Muralitharan, G., Patra, S., & Pundir, M. (2024). Effect of Phyto Constitutes of <i>Ayurveda</i> and <i>Siddha</i> Herbs on SARS-CoV-2/CoVID-19 Management by Modulating the Human Gut Microbiome. Journal of Natural Remedies, 24(9), 1877–1893. https://doi.org/10.18311/jnr/2024/36023

Issue

Section

Review Articles

Categories

Received 2023-12-30
Accepted 2024-08-01
Published 2024-10-07

 

References

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020; 382(8). https://doi.org/10.1056/NEJMoa2001017 PMid:31978945 PMCid:PMC7092803

Jamshidi P, Hajikhani B, Mirsaeidi M, Vahidnezhad H, Dadashi M, Nasiri MJ. Skin manifestations in COVID-19 patients: Are they indicators for disease severity? A systematic review. Front Med. 2021; 8. https://doi.org/10.3389/fmed.2021.634208 PMid:33665200 PMCid: PMC7921489

Li W, Moore MJ, Vasllieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Lette. 2003; 426:40-4. https://doi.org/10.1038/nature02145 PMid:14647384 PMCid:PMC7095016

Ayittey, Foster Kofi, et al. Updates on Wuhan 2019 novel coronavirus epidemic. J Med Virol. 2020; 92(4):403. https://doi.org/10.1002/jmv.25695

Shi TH, Huang YL, Chen CC, Pi WC, Hsu YL, Lo LC, et al. Andrographolide and its fluorescent derivative inhibit the main proteases of 2019-nCoV and SARS-CoV through covalent linkage. Biochem Biophys Res Commun. 2020; 533(3):467-73. https://doi.org/10.1016/j.bbrc.2020.08.086 PMid:32977949 PMCid:PMC7447262

Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017; 168(5):928-43. https://doi.org/10.1016/j.cell.2017.01.022 PMid:28215708 PMCid:PMC7774263

Balasubramani SP, Venkatasubramanian P, Kukkupuni SK, Patwardhan B. Plant-based Rasayana drugs from Ayurveda. Chin J Integr Med. 2011; 17:88-94. https://doi.org/10.1007/s11655-011-0659-5 PMid:21390573

Dhar D, Mohanty A. Gut microbiota and COVID-19-possible link and implications. Virus Res. 2020; 285. https://doi.org/10.1016/j.virusres.2020.198018 PMid:32430279 PMCid:PMC7217790

Zuo T, Zhang F, Lui GCY, Yeoh YK, Li AYL, Zhan H, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterol. 2020; 159(3):944-55. https://doi.org/10.1053/j.gastro.2020.05.048 PMid:32442562 PMCid:PMC7237927

Zuo T, Zhan H, Zhang F, Liu Q, Tso EYK, Lui GCY, et al. Alterations in fecal fungal microbiome of patients with COVID-19 during time of hospitalization until discharge. Gastroenterol. 2020; 159(4):1302-10. https://doi.org/10.1053/j.gastro.2020.06.048 PMid:32598884 PMCid: PMC7318920

Sokol H, Pigneur B, Watterlot L, Lakhdari O, BermúdezHumarán LG, Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008; 105(43):16731-6. https://doi.org/10.1073/pnas.0804812105 PMid:18936492 PMCid:PMC2575488

Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 2020; 71(10):2669-78. https://doi.org/10.1093/cid/ciaa709 PMid:32497191 PMCid:PMC7314193

Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of corona virus disease-19 (COVID-19): The Zhejiang experience. Infect Microb Dis. 2020; 2(2):55-63.

Han MK, McLaughlin VV, Criner GJ, Martinez FJ. Pulmonary diseases and the heart. Circul. 2007; 116(25). https://doi.org/10.1161/CIRCULATIONAHA.106.685206 PMid:18086941

Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 2020; 8. https://doi.org/10.3389/fpubh.2020.00186 PMid:32574290 PMCid:PMC7227397

Zhu X, Ge Y, Wu T, Zhao K, Chen Y, Wu B, et al. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020; 285. https://doi.org/10.1016/j.virusres.2020.198005 PMid:32408156 PMCid:PMC7213959

Sundararaman A, Ray M, Ravindra PV, Halami PM. Role of probiotics to combat viral infections with emphasis on COVID-19. Appl Microbiol Biotechnol. 2020; 104:8089-104. https://doi.org/10.1007/s00253-020-10832-4 PMid:32 813065 PMCid:PMC7434852

Li Q, Cheng F, Xu Q, Su Y, Cai X, Zeng F, et al. The role of probiotics in coronavirus disease-19 infection in Wuhan: A retrospective study of 311 severe patients. Int Immunopharmacol. 2021; 95. https://doi.org/10.1016/j.intimp.2021.107531 PMid:33714884 PMCid:PMC7934664

Ceccarelli G, Borrazzo C, Pinacchio C, Santinelli L, Innocenti G Pietro, Cavallari EN, et al. Oral bacteriotherapy in patients with COVID-19: A retrospective cohort study. Front Nutr. 2021; 7. https://doi.org/10.3389/fnut.2020.613928 PMid:33505983 PMCid:PMC7829198

Hazan S, Stollman N, Bozkurt HS, Dave S, Papoutsis AJ, Daniels J, et al. Lost microbes of COVID-19: Bifidobacterium, Faecalibacterium depletion and decreased microbiome diversity associated with SARS-CoV-2 infection severity. BMJ Open Gastroenterol. 2022; 9(1). https://doi.org/10.1136/bmjgast-2022-000871 PMid:35483736 PMCid:PMC9051551

Kang EJ, Kim SY, Hwang IH, Ji YJ. The effect of probiotics on prevention of common cold: A meta-analysis of randomized controlled trial studies. Korean J Fam Med. 2013; 34(1):2-10. https://doi.org/10.4082/kjfm.2013.34.1.2 PMid:23372900 PMCid:PMC3560336

Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with different severities: A multicenter study of clinical features. Am J Respir Crit Care Med. 2020; 201(11). https://doi.org/10.1164/rccm.202002-0445OC 5PMid:32275452 PMCid:PMC7258639

Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: A systematic review and meta-analysis. J Infect. 2020; 81(2):266-75. https://doi.org/10.1016/j.jinf.2020.05.046 PMid:32473235 PMCid: PMC7255350

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5):475-81. https://doi.org/10.1016/S2213-2600(20) 30079-5 PMid:32105632

Said KB, Alsolami A, Moussa S, Alfouzan F, Bashir AI, Rashidi M, et al. COVID-19 Clinical profiles and fatality rates in hospitalized patients reveal case aggravation and selective co-infection by limited gram-negative bacteria. Int J Environ Res Public Health. 2022;19(9):5270. https://doi.org/10.3390/ijerph19095270 PMid:35564665 PMCid:PMC9101447

Qu J, Cai Z, Liu Y, Duan X, Han S, Liu J, et al. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted pseudomonas aeruginosa chronic colonizer. Front Cell Infect Microbiol. 2021; 11. https://doi.org/10.3389/fcimb.2021.641920 PMid:33816347 PMCid:PMC8010185

Pandey G. Pt. Kashinath Sastri Vidhyotini Hindi commentarator of Caraka Samhita of Agnivesa-1st volume, Sutra Sthan Viddhishonitama Adhayay chapter 24 verse 17-18; 2006.

Kanyinda JNM. Coronavirus (COVID-19): A protocol for prevention and treatment (Covalyse®). Eur J Health Sci. 2020; 2(3). https://doi.org/10.24018/ejmed.2020.2.4.340

Meenakumari R, Thangaraj K, Sundaram A, Sundaram MM, Shanmugapriya P, Mariappan A, et al. Clinical outcomes among COVID-19 patients managed with modern and traditional Siddha medicine - A retrospective cohort study. J Ayurveda Integr Med. 2022; 13(2):100470. https://doi.org/10.1016/j.jaim.2021.06.010 PMid:34188417 PMCid:PMC8226037

Kim YH, Cho KH, Moon BS. Banhabaikchulcheunma-tang Down-regulates LPS-induced production of pro-inflammatory cytokines. J Physiol Pathol Korean Med. 2009; 23(01):192-8.

Sofía D la B, Giannina I, Carolina RM, Gabriela R, Cecilia P. Acute pancreatitis associated with SARS-CoV-2 infection in a pediatric patient. Andes Pediatrica. 2021; 92(6).

Dickson RP, Singer BH, Newstead MW, Falkowski NR, Erb-Downward JR, Standiford TJ, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016; 1(10):16113. https://doi.org/10.1038/nmicrobiol.2016.113 PMid:27670109 PMCid:PMC5076472

Upadhyay J, Tiwari N, Ansari MN. Role of inflammatory markers in corona virus disease (COVID-19) patients: A review. Exp Biol Med. 2020; 245(15):1368-75. https://doi.org/10.1177/1535370220939477 PMid:32635752 PMCid:PMC7441343

Yang WT, Li QY, Ata EB, Jiang YL, Huang H Bin, Shi CW, et al. Immune response characterization of mice immunized with Lactobacillus plantarum expressing spike antigen of transmissible gastroenteritis virus. Appl Microbiol Biotechnol. 2018; 102(19). https://doi.org/10.1007/s00253-018-9238-4 PMid:30056514 PMCid:PMC7080198

Qiu X, Zhang M, Yang X, Hong N, Yu C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis. 2013; 7(11):e558-68. https://doi.org/10.1016/j.crohns.2013.04.002 PMid:23643066

Feng Z, Yu Q, Yao S, Luo L, Zhou W, Mao X, et al. Early prediction of disease progression in COVID-19 pneumonia patients with chest CT and clinical characteristics. Nat Commun. 2020; 11(1):4968. https://doi.org/10.1038/s41467-020-18786-x PMid:33009413 PMCid:PMC7532528

Darif D, Hammi I, Kihel A, El Idrissi Saik I, Guessous F, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microbial Pathogenesis. 2021; 153. https://doi.org/10.1016/j.micpath.2021.104799 PMid:33609650 PMCid:PMC7889464

An J, Lee H, Lee S, Song Y, Kim J, Park IH, et al. Modulation of pro-inflammatory and anti-inflammatory cytokines in the fat by an aloe gel-based formula, QDMC, is correlated with altered gut microbiota. Immune Netw. 2021; 21(2):e15. https://doi.org/10.4110/in.2021.21.e15 PMid:33996171 PMCid:PMC8099612

Valcheva R, Hotte N, Gillevet P, Sikaroodi M, Thiessen A, Madsen KL. Soluble dextrin fibers alter the intestinal microbiota and reduce proinflammatory cytokine secretion in male IL-10-deficient mice. J Nutr. 2015; 145(9). https://doi.org/10.3945/jn.114.207738 PMid:26180249

Kumar P, Berwal R. Supplementation of Ashwagandha root powder improving gut micro flora and immune response of broilers. Pharm Innov. 2019; 8(10):114-18.

Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, et al. Withania somnifera (L.) Dunal: Opportunity for clinical repurposing in COVID-19 management. Front Pharmacol. 2021; 12. https://doi.org/10.3389/fphar.2021.623795 PMid:34012390 PMCid:PMC8126694

Balkrishna A, Nain P, Chauhan A, Sharma N, Gupta A, Ranjan R, et al. Super critical fluid extracted fatty acids from Withania somnifera seeds repair psoriasis-like skin lesions and attenuate pro-inflammatory cytokines (TNF-α and IL-6) release. Biomolecules. 2020; 10(2):185. https://doi.org/10.3390/biom10020185 PMid:31991752 PMCid:PMC7072271

Straughn AR, Kakar SS. Withaferin A: A potential therapeutic agent against COVID-19 infection. J Ovarian Res. 2020; 13:79. https://doi.org/10.1186/s13048-020-00684-x PMid:32684166 PMCid:PMC7369003

Khanna K, Kohli SK, Kaur R, Bhardwaj A, Bhardwaj V, Ohri P, et al. Herbal immune-boosters: Substantial warriors of pandemic COVID-19 battle. Phytomed. 2021; 85. https://doi.org/10.1016/j.phymed.2020.153361 PMid:33485605 PMCid:PMC7532351

Thakkar SS, Shelat F, Thakor P. Magical bullets from an indigenous Indian medicinal plant Tinospora cordifolia: An in silico approach for the antidote of SARS-CoV-2. Egypt J Pet. 2021; 30(1):53-66. https://doi.org/10.1016/j.ejpe.2021.02.005 PMCid:PMC7901307

Jena S, Munusami P, Balamurali MM, Chanda K. Computationally approached inhibition potential of Tinospora cordifolia towards COVID-19 targets. VirusDis. 2021; 32:65-77. https://doi.org/10.1007/s13337-021-00666-7 PMid:33778129 PMCid:PMC7980128

Tian Y, Cai J, Gui W, Nichols RG, Koo I, Zhang J, et al. Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metab Dispos. 2019; 47(2). https://doi.org/10.1124/dmd.118.083691 PMid:30409838 PMCid:PMC6323626

Adak S, Chakraborty D, Maji HS, Basu S, Roy P, Mitra S, et al. Comparison of the antimicrobial activity of the phyto-constituents obtained from the stem bark and leaf extracts of Phyllanthus emblica L. against different strains of Staphylococcus aureus and Salmonella typhi. Res J. Pharmacol. Pharm. 2018; 10(2):53-60. https://doi.org/10.5958/2321-5836.2018.00009.5

Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011; 85(9). https://doi.org/10.1128/JVI.02232-10 PMid:21325420 PMCid:PMC3126222

Sharma H, Yunus GY, Agrawal R, Kalra M, Verma S, Bhattar S. Antifungal efficacy of three medicinal plants Glycyrrhiza glabra, Ficus religiosa, and Plantago major against oral Candida albicans: A comparative analysis. Indian J Dent Res. 2016; 27(4):433-6. https://doi.org/10.4103/0970-9290.191895 PMid:27723643

Qiu M, Huang K, Liu Y, Yang Y, Tang H, Liu X, et al. Modulation of intestinal microbiota by glycyrrhizic acid prevents high-fat diet-enhanced pre-metastatic niche formation and metastasis. Mucosal Immunol. 2019; 12(4):945-57. https://doi.org/10.1038/s41385-019-0144-6 PMid:30755716

Chikhale RV, Sinha SK, Patil RB, Prasad SK, Shakya A, Gurav N, et al. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J Biomol Struct Dyn. 2021; 39(14):5033-47. https://doi.org/10.1080/07391102.2020.1784289 PMid:32579064 PMCid:PMC7335809

Patel CN, Goswami D, Jaiswal DG, Parmar RM, Solanki HA, Pandya HA. Pinpointing the potential hits for hindering interaction of SARS-CoV-2 S-protein with ACE2 from the pool of antiviral phytochemicals utilizing molecular docking and Molecular Dynamics (MD) simulations. J Mol Graph Model. 2021; 105: 107874. https://doi.org/10.1016/j.jmgm.2021.107874 PMid:33647752 PMCid:PMC7897937

Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y, et al. Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-NF-κB Axis. Front Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.679897 PMid:34367139 PMCid:PMC8339999

Sa-Ngiamsuntorn K, Suksatu A, Pewkliang Y, Thongsri P, Kanjanasirirat P, Manopwisedjaroen S, et al. Anti-SARSCoV-2 activity of Andrographis paniculata extract and its major component andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representative. J Nat Prod. 2021; 84(04):1261-70. https://doi.org/10.1021/acs.jnatprod.0c01324 PMid:33844528

Wu H, Wu X, Huang L, Ruan C, Liu J, Chen X, et al. Effects of andrographolide on mouse intestinal microflora based on high-throughput sequence analysis. Front Vet Sci. 2021; 8:702885. https://doi.org/10.3389/fvets.2021.702885 PMid:34485430 PMCid:PMC8416444

Mohapatra PK, Chopdar KS, Dash GC, Mohanty AK, Raval MK. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease. J Biomol Struct Dyn. 2023; 41(2):435-44. https://doi.org/10.1080/07391102.2021.2007170 PMid:34821198

Islam R, Sultana N, Bhakta S, Haque Z, Hasan A, Siddique MP, et al. Modulation of growth performance, gut morphometry, and cecal microbiota in broilers by clove (Syzygium aromaticum) and tulsi (Ocimum sanctum) supplementation. Poult Sci. 2023; 102(1):102266. https://doi.org/10.1016/j.psj.2022.102266 PMid:36370662 PMCid:PMC9660731

Sumanth M, Mustafa SS. Antistress, adoptogenic and immunopotentiating activity roots of Boerhaavia diffusa in mice. Int J Pharmacol. 2007; 3(5):416-20. https://doi.org/10.3923/ijp.2007.416.420

Surya UR, Praveen N. A molecular docking study of SARS-CoV-2 main protease against phytochemicals of Boerhavia diffusa Linn. for novel COVID-19 drug discovery. VirusDis. 2021; 32:46-54. https://doi.org/10.1007/s13337-021-00683-6 PMid:33758772 PMCid:PMC7971947

Singh C, Singh SK, Nath G, Rai NP. Anti-mycobacterial activity of Piper longum L. fruit extracts against multi drug resistant Mycobacterium spp. Internat J Phytomed. 2011; 3(3).

Naika R, Prasanna KP, Ganapathy PSS. Antibacterial activity of piperlongumine an alkaloid isolated from the methanolic root extract of Piper longum L. Pharmacoph. 2010; 1(2):141-8.

Rohaim MA, El Naggar RF, Clayton E, Munir M. Structural and functional insights into non-structural proteins of coronaviruses. Microb Pathog. 2021; 150:104641. https://doi.org/10.1016/j.micpath.2020.104641 PMid:33242646 PMCid:PMC7682334

Kim HG, Cho JH, Jeong EY, Lim JH, Lee SH, Lee HS. Growth-inhibiting activity of active component isolated from Terminalia chebula fruits against intestinal bacteria. J Food Prot. 2006; 69(9):2205-9. https://doi.org/10.4315/0362-028X-69.9.2205 PMid:16995525

Rubab I, Ali S. Dried fruit extract of Terminalia chebula modulates the immune response in mice. Food Agric Immunol. 2016; 27(1). https://doi.org/10.1080/09540105.2015.1055554

Upadhyay S, Tripathi PK, Singh M, Raghavendhar S, Bhardwaj M, Patel AK. Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother Res. 2020; 34(12):3411-19. https://doi.org/10.1002/ptr.6802 PMid:32748969 PMCid: PMC7436756

Shen L, Liu L, Ji HF. Regulative effects of curcumin spice administration on gut microbiota and its pharmacological implications. Food Nutr Res. 2017; 61. https://doi.org/10.1080/16546628.2017.1361780 PMid:28814952 PMCid: PMC5553098

Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in silico study for drug development. J Biomol Struct Dyn. 2020. https://doi.org/10.26434/chemrxiv.12094203

Thimmulappa RK, Mudnakudu-Nagaraju KK, Shivamallu C, Subramaniam KJT, Radhakrishnan A, Bhojraj S, et al. Antiviral and immunomodulatory activity of curcumin: A case for prophylactic therapy for COVID-19. Heliyon. 2021; 7:E06350. https://doi.org/10.1016/j.heliyon.2021.e06350 PMid:33655086 PMCid:PMC7899028

Radhakrishnan N, Gnanamani A, Mandal AB. A potential antibacterial agent Embelin, a natural benzoquinone extracted from Embelia ribes. Biol Med. 2011; 3(2 Special Issue).

Bachmetov L, Gal-Tanamy M, Shapira A, Vorobeychik M, Giterman-Galam T, Sathiyamoorthy P, et al. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J Viral Hepat. 2012; 19(2):e81-8. https://doi.org/10.1111/j.1365-2893.2011.01507.x PMid:22239530

Rahaman L, Ghosh S, Nath N, Sen A, Sharma BK. Extracts of Adhatoda vasica Nees and vasicine inhibits biofilm formation of Klebsiella pneumoniae. IOSR J Pharm Biol Sci. 2018; 13(2).

Thangaraju P, Sudha TYS, Pasala PK, Hari TYS, Venkatesan S, Thangaraju E. The role of Justicia adhatoda as prophylaxis for COVID-19 – Analysis based on docking. Infect Disord Drug Targets. 2021; 21(08):1-7. https://doi.org/10.2174/1871526521666210119120643 PMid:33463480

Ribeiro AMB, Sousa JN de, Costa LM, Oliveira FA de A, dos Santos RC, Silva Nunes AS, et al. Antimicrobial activity of Phyllanthus amarus Schumach. and Thonn and inhibition of the NorA efflux pump of Staphylococcus aureus by Phyllanthin. Microb Pathog. 2019; 130:242-6. https://doi.org/10.1016/j.micpath.2019.03.012 PMid:30876871

Bafna K, Krug RM, Montelione GT. Structural similarity of SARS-CoV2 Mpro and HCV NS3/4A proteases suggests new approaches for identifying existing drugs useful as COVID-19 therapeutics. ChemRxiv. 2020. https://doi.org/10.26434/chemrxiv.12153615

Harikrishnan H, Jantan I, Alagan A, Haque MA. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: Potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacol. 2020; 28. https://doi.org/10.1007/s10787-019-00671-9 PMid:31792765

Wang X, Zhang D, Jiang H, Zhang S, Pang X, Gao S, et al. Gut microbiota variation with short-term intake of ginger juice on human health. Front Microbiol. 2021; 11. https://doi.org/10.3389/fmicb.2020.576061 PMid:33708178 PMCid:PMC7940200

Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of citrus medica and Zingiber officinale for COVID-19 inhibition: In silico evidence for cues from Ayurveda. Futur J Pharm Sci. 2021; 7(01):1-9. https://doi.org/10.1186/s43094-020-00171-6 PMid:33457429 PMCid:PMC7794642

Júnior CDS, Martins CCS, Dias FTF, Sitanaka NY, Ferracioli LB, Moraes JE, et al. The use of an alternative feed additive, containing benzoic acid, thymol, eugenol, and piperine, improved growth performance, nutrient and energy digestibility, and gut health in weaned piglets. J Anim Sci. 2020; 98(5). https://doi.org/10.1093/jas/skaa119 PMid:32280983 PMCid:PMC7229883

Kumar MP, Sundaram KM, Ramasamy M. Coronavirus spike (S) glycoprotein (2019-ncov) targeted Siddha medicines Kaba Sura Kudineer and Thontha Sura Kudineer - In silico evidence for corona viral drug. Asian J Pharm Res Health Care. 2020; 12(01):20-7. https://doi.org/10.18311/ajprhc/2020/25103

Xie J, Song W, Liang X, Zhang Q, Shi Y, Liu W, et al. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed. Pharmacother. 2020; 127: 110147. https://doi.org/10.1016/j.biopha.2020.110147 PMid:32559841

Canli K, Yetgin A, Akata I, Altuner EM. Antimicrobial activity and chemical composition screening of Anacyclus pyrethrum root. Indian J Pharm Educ Res. 2017; 51(3). https://doi.org/10.5530/ijper.51.3s.22

Kerboua KA, Benosmane L, Namoune S, Ouled-Diaf K, Ghaliaoui N, Bendjeddou D. Anti-inflammatory and antioxidant activity of the hot water-soluble polysaccharides from Anacyclus pyrethrum (L.) roots. J Ethnopharmacol. 2021; 281:114491. https://doi.org/10.1016/j.jep.2021.114491 PMid:34364970

Kalinina TS, Zlenko DV, Kiselev AV, Litvin AA, Stovbun SV. Antiviral activity of the high-molecular-weight plant polysaccharides (Panavir®). Int J Biol Macromol. 2020; 161:936-8. https://doi.org/10.1016/j.ijbiomac.2020.06.031 PMid:32534094 PMCid:PMC7287457

Elizalde-Romero CA, Montoya-Inzunza LA, ContrerasAngulo LA, Heredia JB, Gutiérrez-Grijalva EP. Solanum fruits: Phytochemicals, bioaccessibility and bioavailability, and their relationship with their health-promoting effects. Front Nutr. 2021; 8. https://doi.org/10.3389/fnut.2021.790582 PMid:34938764 PMCid:PMC8687741

Gowtham HG, Murali M, Singh SB, Shivamallu C, Pradeep S, Shivakumar CS, et al. Phytoconstituents of Withania somnifera unveiled Ashwagandhanolide as a potential drug targeting breast cancer: Investigations through computational, molecular docking and conceptual DFT studies. PLoS One. 2022; 17(10). https://doi.org/10.1371/journal.pone.0275432 PMid:36201520 PMCid:PMC9536605

Li Q, Cui Y, Xu B, Wang Y, Lv F, Li Z, et al. Main active components of Jiawei Gegen Qinlian decoction protects against ulcerative colitis under different dietary environments in a gut microbiota-dependent manner. Pharmacol Res. 2021; 170. https://doi.org/10.1016/j.phrs.2021.105694 PMid:34087350

Li Y, Liu T, Yan C, Xie R, Guo Z, Wang S, et al. Diammonium glycyrrhizinate protects against nonalcoholic fatty liver disease in mice through modulation of gut microbiota and restoration of intestinal barrier. Mol Pharm. 2018; 15(9). https://doi.org/10.1021/acs.molpharmaceut.8b00347 PMid:30036479

Suzuki T, Tanabe S, Hara H. Kaempferol enhances intestinal barrier function through the cytoskeletal association and expression of tight junction proteins in Caco-2 cells 1-3. J Nutr. 2011; 141(1):87-94. https://doi.org/10.3945/jn.110.125633 PMid:21068182

Suzuki T, Hara H. Quercetin enhances intestinal barrier function through the assembly of zonnula occludens-2, occludin, and claudin-1 and the expression of claudin-4 in caco-2 cells. J Nutr. 2009; 139(5):965-74. https://doi.org/10.3945/jn.108.100867 PMid:19297429

Omonijo FA, Liu S, Hui Q, Zhang H, Lahaye L, Bodin JC, et al. Thymol improves barrier function and attenuates inflammatory responses in porcine intestinal epithelial cells during lipopolysaccharide (LPS) )-induced inflammation. J Agric Food Chem. 2019; 67(2):615-24. https://doi.org/10.1021/acs.jafc.8b05480 PMid:30567427

Peng B, Xue L, Yu Q, Zhong T. Ellagic acid alleviates TNBS-induced intestinal barrier dysfunction by regulating mucin secretion and maintaining tight junction integrity in rats. Int J Food Sci Nutr. 2023:476-86. https://doi.org/10.1080/09637486.2023.2230525 PMid:37455358

Wu S, Guo T, Qi W, Li Y, Gu J, Liu C, et al. Curcumin ameliorates ischemic stroke injury in rats by protecting the integrity of the blood brain barrier. Exp Ther Med. 2021; 22(1). https://doi.org/10.3892/etm.2021.10215 PMid:34055082 PMCid:PMC8145684

Kim DY, Kang MK, Lee EJ, Kim YH, Oh H, Kim S Il, et al. Eucalyptol inhibits amyloid‐β‐induced barrier dysfunction in glucose-exposed retinal pigment epithelial cells and diabetic eyes. Antioxidants. 2020; 9(10):1000. https://doi.org/10.3390/antiox9101000 PMid:33076507 PMCid:PMC7602655

Wu XX, Huang XL, Chen RR, Li T, Ye HJ, Xie W, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS) )-induced inflammation in Caco-2 cell monolayers. Inflam. 2019; 42:2215-25. https://doi.org/10.1007/s10753-019-01085-z PMid:31473900

Ibrahim D, Eldemery F, Metwally AS, Abd-Allah EM, Mohamed DT, Ismail TA, et al. Dietary eugenol nanoemulsion potentiated performance of broiler chickens: Orchestration of digestive enzymes, intestinal barrier functions and cytokines related gene expression with a consequence of attenuating the severity of E. coli O78 infection. Front Vet Sci. 2022; 9. https://doi.org/10.3389/fvets.2022.847580 PMid:35812892 PMCid:PMC9260043