Biofabrication of Silver Nanoparticles Using Green Seaweed: Characterisation and Antibacterial Evaluation
DOI:
https://doi.org/10.18311/jnr/2024/36458Keywords:
Antibacterial Activity, Characterisation, Green Seaweed, Silver NanoparticlesAbstract
This study investigates the Chaetomorpha antennina (CA) seaweed-mediated biosynthesis of silver nanoparticles (AgNPs). The synthesis process of silver nanoparticles was monitored over time with the help of an Ultraviolet-visible spectrophotometer and further characterisation studies were also performed. Differential Light Scattering (DLS) measurements revealed a mean particle size of approximately 103.5nm and a mean zeta potential value of -57.5mV for AgNPs. The spherical shape and size of the AgNPs were confirmed through High-Resolution Transmission Electron Microscopy (HR-TEM) imaging, while Energy Dispersive X-ray Spectroscopy (EDAX) analysis provided insights into the elemental composition. The concentration of AgNPs was estimated using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The antibacterial potential of AgNPs was evaluated against both gram-positive (Bacillus cereus, Staphylococcus aureus and Bacillus subtilis) and gram-negative bacterial strains (Klebsiella pneumoniae, Escherichia coli, Shigella dysentriae, Salmonella typhi, Pseudomonas aeruginosa and Proteus mirabilis) using the agar well diffusion method. From the results, AgNPs exhibited significant antibacterial activity against B. subtilis and S. typhi among all the tested concentration levels (25, 50, 75 and 100μl).
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nanthakumar Ramalingam, Prabakaran Venkatachalam, Chellan Rose, Seethalakshmi Sankar (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-03-01
Published 2024-04-30
References
Abdelghany TM, Al-Rajhi AM, Al Abboud MA, Alawlaqi MM, Ganash Magdah A, Helmy EA, Mabrouk AS. Recent advances in green synthesis of silver nanoparticles and their applications: About future directions. A review. Bio Nano Sci. 2018; 8:5-16. https://doi.org/10.1007/s12668-017-0413-3
Philip D. Honey mediated green synthesis of silver nanoparticles. Spectrochim Acta Part A. 2010; 75(3):1078-81. https://doi.org/10.1016/j.saa.2009.12.058 PMid:20060777.
Kirubha E, Vishista K, Palanisamy PK. Gripe water- mediated green synthesis of silver nanoparticles and their applications in nonlinear optics and surface-enhanced Raman spectroscopy. Appl Nanosci. 2015; 5:777-86. https:// doi.org/10.1007/s13204-014-0376-4
Hoshyar R, Khayati GR, Poorgholami M, Kaykhaii M. A novel green one-step synthesis of gold nanoparticles using crocin and their anti-cancer activities. J Photochem Photobiol B. 2016; 159:237-42. https://doi.org/10.1016/j. jphotobiol.2016.03.056 PMid:27085640.
Aromal SA, Babu KD, Philip D. Characterisation and catalytic activity of gold nanoparticles synthesised using ayurvedic arishtams. Spectrochim Acta Part A. 2012; 96:1025-30. https://doi.org/10.1016/j.saa.2012.08.010 PMid:22954810.
Ezealisiji KM, Noundou XS, Ukwueze SE. Green synthesis and characterisation of monodispersed silver nanoparticles using root bark aqueous extract of Annona muricata Linn and their antimicrobial activity. Appl Nanosci. 2017; 7:905- 11. https://doi.org/10.1007/s13204-017-0632-5
Das M, Smita SS. Biosynthesis of silver nanoparticles using bark extracts of Butea monosperma (Lam.) Taub. and study of their antimicrobial activity. Appl Nanosci. 2018; 8:1059- 67. https://doi.org/10.1007/s13204-018-0721-0
Aisida SO, Ugwu K, Akpa PA, Nwanya AC, Nwankwo U, Botha SS, Ejikeme PM, Ahmad I, Maaza M, Ezema FI. Biosynthesis of silver nanoparticles using bitter leave (Veronica amygdalina) for antibacterial activities. Surf Interfaces. 2019; 17:100359. https://doi.org/10.1016/j.surfin. 2019.100359
Odeniyi MA, Okumah VC, Adebayo-Tayo BC, Odeniyi OA. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustainable Chem Pharm. 2020; 15:100197. https://doi.org/10.1016/j.scp.2019.100197
Sood R, Chopra DS. Optimisation of reaction conditions to fabricate Ocimum sanctum synthesised silver nanoparticles and its application to nano-gel systems for burn wounds. Mater Sci Eng C. 2018; 92:575-89. https://doi.org/10.1016/ j.msec.2018.06.070 PMid:30184784.
Ramalingam N, Rose C, Krishnan C, Sankar S. Green synthesis of silver nanoparticles using red marine algae and evaluation of its antibacterial activity. J Pharm Sci Res. 2018; 10(10):2435-8.
Kannan RR, Arumugam R, Ramya D, Manivannan K, Anantharaman P. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci. 2013; 3:229-33. https://doi.org/10.1007/s13204- 012-0125-5
Se-Kwom Kim. Springer handbook of marine biotechnology. Springer-Verlag Berlin Heidelberg. 2015; p. 1229-46.
Inbakandan D, Sivaleela G, Peter DM, Kiurbagaran R, Venkatesan R, Khan SA. Marine sponge extract assisted biosynthesis of silver nanoparticles. Mater Lett. 2012; 87:66-8. https://doi.org/10.1016/j.matlet.2012.07.083
Satapathy S, Paikaray S, Thirunavoukkarasu M, Panda CR, Subbudhi E. Biosynthesis and characterisation of silver nanoparticles derived from marine bivalve Donax cuneatus (Linnaeus) and assessment of its antimicrobial potential. Inorg Nano-Met Chem. 2017; 47(7):1044-8. https://doi.org/10.1080/24701556.2017.1284083
Ramalingam N, Rose C, Krishnan C, Sankar S, Kurian SG. Extracellular biofabrication of silver and gold nanoparticles: Treasures from the abyssal zone. Asian J Pharm Clin Res. 2019; 12(2):44-54. https://doi.org/10.22159/ajpcr.2019. v12i2.29781
Ravikumar S, Ramanathan G, Jacob Inbaneson S, Ramu A. Antiplasmodial activity of two marine polyherbal preparations from Chaetomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum. Parasitol Res. 2011; 108:107-13. https://doi.org/10.1007/s00436-010-2041-5 PMid:20844892. 18. Sivakumar SM, Safhi MM. Isolation and screening of bioactive principle from Chaetomorpha antennina against certain bacterial strains. Saudi Pharm J. 2013; 21(1):119-21. https://doi.org/10.1016/j.jsps.2012.02.003 PMid:23960826 PMCid: PMC3745066.
Pattanayak S, Mollick MM, Maity D, Chakraborty S, Dash SK, Chattopadhyay S, Roy S, Chattopadhyay D, Chakraborty M. Butea monosperma bark extract mediated green synthesis of silver nanoparticles: Characterisation and biomedical applications. J Saudi Chem Soc. 2017; 21(6):673-84. https://doi.org/10.1016/j.jscs.2015.11.004
Charulatha S, Dharrunya HV, Dhanamurugan R, Devadharshini R, Paul D, Sinduja ME, Bindhu J. Evaluation of antioxidant and antimicrobial potential of green synthesised Ag nanoparticles from ethanolic leaf extract of Thespesia populnea. J Nat Remed. 2022; 22(2):137-44. https://doi.org/10.18311/jnr/2022/26226
Elmusa F, Aygun A, Gulbagca F, Seyrankaya A, Göl F, Yenikaya C, Sen F. Investigation of the antibacterial properties of silver nanoparticles synthesised using Abelmoschus esculentus extract and their ceramic applications. Int J Environ Sci Technol. 2021; 18:849-60. https://doi.org/10.1007/s13762-020-02883-x
Dua TK, Giri S, Nandi G, Sahu R, Shaw TK, Paul P. Green synthesis of silver nanoparticles using Eupatorium adenophorum leaf extract: characterisations, antioxidant, antibacterial and photocatalytic activities. Chemical Papers. 2023; 77:2947-56. https://doi.org/10.1007/s11696-023-02676-9 PMid:36714039 PMCid: PMC9873543.
Mofolo MJ, Kadhila P, Chinsembu KC, Mashele S, Sekhoacha M. Green synthesis of silver nanoparticles from extracts of Pechuel-loeschea leubnitziae: Their anti-proliferative activity against the U87 cell line. Inorg Nano-Met Chem. 2020; 50(10):949-55. https://doi.org/10.1080/24701556.2020.1729191