A Review on Green Synthesis of Metallic Nanoparticles by Using Plant Extracts and Their Role in Cancer

Jump To References Section

Authors

  • Department of Zoology, University of Allahabad, Prayagraj – 211002, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jnr/2024/36484

Keywords:

Anti-angiogenic, Anti-bacterial, Anti-inflammatory, Cancer, Nanoparticles

Abstract

Cancer is one of the deadliest diseases that have a significant negative impact on the world’s enormous population. The chemotherapeutic medicines used in the treatment of cancer spread throughout the body causing general toxicity, poor patient compliance and even treatment cessation. This makes it difficult to deliver therapeutic agents to tumour cells with precision. Advancements in the field of medical science are being uplifted by the development of nanotechnology, which provides tremendous solutions to deal with such life-threatening diseases. Nanoparticles (NP) synthesised for medical purposes need to be biocompatible and low- or non-toxic. Therefore, the green generation of NPs is emerging as an alternative approach to physical and chemical methods. This study reviews the use of plants to synthesise these NPs. These are more stable than those synthesised from other biological sources. These NPs can be synthesised by using different metals such as gold (Au), silver (Ag), zinc (Zn), platinum (Pt), etc. Plant-derived green-manufactured Metallic Nanoparticles (MNPs) are extensively utilised in medicine as antibacterial, anti-inflammatory, anti-angiogenic and anti-cancer agents. Therefore, this review aims to study different green synthesised MNPs, their synthesis method, characterisation and their role in cancer therapy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-10-07

How to Cite

Parmar, J. (2024). A Review on Green Synthesis of Metallic Nanoparticles by Using Plant Extracts and Their Role in Cancer. Journal of Natural Remedies, 24(9), 1909–1922. https://doi.org/10.18311/jnr/2024/36484
Received 2024-02-06
Accepted 2024-07-25
Published 2024-10-07

 

References

Pradhan D, Biswasroy P, Sahu A, Sahu DK, Ghosh G, Rath G. Recent advances in herbal nanomedicines for cancer treatment. Curr Mol Pharmacol. 2021; 14(3):292-305. https://doi.org/10.2174/1874467213666200525010624 PMid:32448111.

Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018; 9:1050-74. https://doi.org/10.3762/ bjnano.9.98 PMid:29719757 PMCid: PMC5905289.

Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol. 2018; 37(3):209-30. https://doi.org/10.1615/ JEnvironPatholToxicolOncol.2018026009 PMid:30317972 PMCid: PMC6192267.

Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005; 105(4):1103-69. https://doi.org/10.1021/cr0300789 PMid:15826011.

Dahoumane SA, Jeffryes C, Mechouet M, Agathos SN. Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering (Basel). 2017; 4(1):14 https://doi.org/10.3390/bioengineering4010014 PMid:28952493 PMCid:PMC55 90428.

Raab CS, Myrtill S, Gazsó A, Fiedeler U, Nentwich M. What are synthetic nanoparticles? 2011.

Vlamidis Y, Voliani V. Bringing again noble metal nanoparticles to the forefront of cancer therapy. Front Bioeng Biotechnol. 2018; 6:143. https://doi.org/10.3389/ fbioe.2018.00143 PMid:30349817 PMCid: PMC6186777.

Cooper ER. Nanoparticles: A personal experience for formulating poorly water-soluble drugs. J Control Release. 2010; 141(3):300-2. https://doi.org/10.1016/j.jconrel.2009.10.006 PMid:19822177.

Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 2022; 5(6):1593-615. https://doi.org/10.1007/s42247-02100335-x PMid:35005431 PMCid: PMC8724657.

Palazzolo S, Bayda S, Hadla M, Caligiuri I, Corona G, Toffoli G, et al. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr Med Chem. 2018; 25(34):4224-68. https://doi.org/10.2174/09298673246661 70830113755 PMid:28875844.

Dadwal A, Baldi A, Kumar Narang R. Nanoparticles as carriers for drug delivery in cancer. Artif Cells Nanomed Biotechnol. 2018; 46(sup2):295-305. https://doi.org/10.10 80/21691401.2018.1457039 PMid:30043651.

Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol. 2019; 47(1):844-51. https://doi.org/10.1080/21691401.2019.157 7878 PMid:30879351.

Baruwati B, Polshettiwar V, Varma RS. Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem. 2009; 11(7):926-30. https://doi.org/10.1039/b902184a

Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra AJC, et al. Green synthesis of silver nanoparticles using latex of Jatropha curcas. 2009; 339(1-3):134-9. https://doi.org/10.1016/j.colsurfa.2009.02.008

Dhillon GS, Brar SK, Kaur S, Verma MJCrib. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. 2012; 32(1):49-73. https://doi.org/ 10.3109/07388551.2010.550568 PMid:21696293.

De Lima R, Seabra AB, Durán. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesised nanoparticles. Journal of Applied Toxicology 2012; 32(11):867-79. https://doi.org/10.1002/ jat.2780 PMid:22696476.

Cui C, Gan L, Li H-H, Yu S-H, Heggen M, Strasser. Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Letters 2012; 12(11):5885-9. https://doi.org/10.1021/nl3032795 PMid:23062102.

Gericke M, Pinches A. Biological synthesis of metal nanoparticles. J Hydrometallurgy 2006; 83(1-4):132-40. https://doi.org/10.1016/j.hydromet.2006.03.019

Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms. Critical Reviews in Biotechnology 2009; 29(4):279-306. https://doi.org/10.3109/07388550903062462 PMid:199293 19.

Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG. Gold nanoparticles produced in a microalga. Journal of Nanoparticle Research 2011; 13:6439-45. https://doi.org/10.1007/s11051-011-0397-9

Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research 2008; 10:507-17. https://doi.org/10.1007/s11051-007-9275-x

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, et al. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. 2001; 1(10):515-9. https://doi.org/10.1021/ nl0155274

Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. 2007; 318(5853):1108-13. https://doi.org/10.1126/science.1145720 PMid:17932254.

Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology Progress 2003; 19(6):1627-31. https://doi.org/10.1021/ bp034070w PMid:14656132.

Shankar SS, Rai A, Ahmad A, Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 2004; 275(2):496-502. https://doi.org/10.1016/j.jcis.2004.03.003 PMid:15178278.

Singaravelu G, Arockiamary J, Kumar VG, Govindaraju K, Biointerfaces sB. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces. 2007; 57(1):97-101. https://doi.org/10.1016/j.colsurfb.2007.01.010 PMid:17350236.

Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Bio Med. 2010; 6(2):257-62. https://doi.org/10.1016/j.nano.2009.07.002 PMid:19616126.

Pantidos N, Horsfall EL. Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol. 2014; 5(5). https://doi.org/10.4172/21577439.1000233

Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG. Gold nanoparticles produced in a microalga. J Nanopart Res.2011; 13(12):6439-45. https://doi.org/10.1007/s11051011-0397-9

Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J Adv Res. 2016; 7(1):17-28. https://doi.org/10.1016/j.jare.2015.02.007 PMid:26843966 PMCid: PMC4703479.

Jain S, Mehata MS. Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci Rep. 2017; 7(1):15867. https://doi.org/10.1038/s41598-017-15724-8 PMid:29158537 PMCid: PMC5696514.

Aritonang HF, Koleangan H, Wuntu AD. Synthesis of silver nanoparticles using aqueous extract of medicinal plants (Impatiens balsamina and Lantana camara) fresh leaves and analysis of antimicrobial activity. Int J Microbiol. 2019; 2019:8642303. https://doi.org/10.1155/2019/8642303 PMid:31354833 PMCid: PMC6636566.

Nande A, Raut S, Michalska-Domanska M, Dhoble SJ. Green synthesis of nanomaterials using plant extract: A review. Curr Pharm Biotechnol. 2021; 22(13):1794-811. https://doi.org/10.2174/1389201021666201117121452 PMid:33208069.

Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, et al. Rapid synthesis of silver nanoparticles using the dried medicinal plant of basil. Colloids Surf B Biointerfaces. 2010; 81(1):81-6. https://doi.org/10.1016/j.colsurfb.2010.06.029 PMid:20656463.

Barabadi H, Honary S, Ali Mohammadi M, Ahmadpour E, Rahimi MT, Alizadeh A, et al. Green chemical synthesis of gold nanoparticles by using Penicillium aculeatum and their scolicidal activity against hydatid cyst protoscolices of Echinococcus granulosus. Environ Sci Pollut Res Int. 2017; 24(6):5800-10. https://doi.org/10.1007/s11356-0168291-8 PMid:28054267.

Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, et al. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine (Lond). 2016; 11(23):3157-77. https://doi.org/10.2217/nnm-2016-0279 PMid:27809668.

De Morais MG, Vaz Bda S, De Morais EG, Costa JA. Biologically active metabolites synthesized by microalgae. Biomed Res Int. 2015; 2015:835761. https:// doi.org/10.1155/2015/835761 PMid:26339647 PMCid: PMC4538420.

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. “Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol. 2018; 16. https://doi.org/10.1186/s12951018-0408-4 PMid:30373622 PMCid: PMC6206834.

Hettiarachchi SS, Dunuweera SP, Dunuweera AN, Rajapakse RGJAo. Synthesis of curcumin nanoparticles from raw turmeric rhizome. ACS Omega. 2021; 6(12):8246-52. https://doi.org/10.1021/acsomega.0c06314 PMid:33817483 PMCid: PMC8015141.

Danawala TM, Trivedi KA, Lad UM, Desai BN, Singh SK, Suthar DH, et al. Luminescent carbon quantum dots derived from Syzygium cumini seeds with endogenous anti-oxidant and cytotoxic potency including in vitro photoluminescence and live cell imaging. New J Chem. 2024. https://doi.org/10.1039/D4NJ00040D

Velidandi A, Sarvepalli M, Gandam PK, Pabbathi NPP, Baadhe RR. Characterization, catalytic and recyclability studies of nano-sized spherical palladium particles synthesized using aqueous poly-extract (turmeric, neem and tulasi). Environmental Research 2023; 228:115821. https://doi.org/10.1016/j.envres.2023.115821 PMid:37019298.

Nisha SN, Aysha O, Rahaman JSN, Kumar PV, Valli S, Nirmala P, et al. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2014; 124:194-8. https://doi.org/10.1016/j.saa.2013.12.019 PMid: 24486863.

Rao KG, Ashok CH, Rao KV, Chakra CS, Tambur P. Green synthesis of TiO2 nanoparticles using Aloe vera extract. Int J Adv Res Phys Sci. 2015; 2(1A):28-34.

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, Lightfoot DA. Phytochemicals: extraction, isolation and identification of bioactive compounds from plant extracts. Plants (Basel). 2017; 6(4):42 https://doi.org/10.3390/ plants6040042 PMid:28937585 PMCid: PMC5750618.

Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkar VC. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. Journal of Pharmacognosy and Phytochemistry 2017; 6(1):32-6.

Karmous I, Pandey A, Haj KB, Chaoui A. Efficiency of the green synthesized nanoparticles as new tools in cancer therapy: Insights on plant-based bioengineered nanoparticles, biophysical properties and anticancer roles. Biol Trace Elem Res. 2020; 196(1):330-42. https://doi.org/10.1007/s12011-019-01895-0 PMid:31512171.

Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, et al. Plant-mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics. 2021; 13(10). https://doi.org/10.3390/pharmaceutics13101662 PMid:34683954 PMCid: PMC8540056.

Khan ZUH, Sadiq HM, Shah NS, Khan AU, Muhammad N, Hassan SU, et al. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. J Photochem Photobiol B. 2019; 192:147-57. https://doi.org/10.1016/j.jphotobiol.2019.01.013 PMid:30738346.

Pippa N, Chronopoulos DD, Stellas D, Fernandez-Pacheco R, Arenal R, Demetzos C, et al. Design and development of multi-walled carbon nanotube-liposome drug delivery platforms. Int J Pharm. 2017; 528(1-2):429-39. https://doi.org/10.1016/j.ijpharm.2017.06.043 PMid:28627453.

Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, et al. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv Cancer Res. 2018; 137:115-70. https://doi.org/10.1016/ bs.acr.2017.11.003 PMid:29405974 PMCid: PMC6550462.

Bingham RJ, Olmsted PD, Smye SW. Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles. Phys Rev E Stat Nonlin Soft Matter Phys. 2010; 81(5Pt1):051909. https://doi.org/10.1103/ PhysRevE.81.051909 PMid:20866263.

Wang XY, Ishida T, Ichihara M, Kiwada H. Influence of the physicochemical properties of liposomes on the accelerated blood clearance phenomenon in rats. J Control Release. 2005; 104(1):91-102. https://doi.org/10.1016/j.jconrel.2005.01.008 PMid:15866337.

Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018; 3:7. https://doi.org/10.1038/s41392-017-0004-3 PMid:29560 283 PMCid: PMC5854578

Jain AS, Pawar PS, Sarkar A, Junnuthula V, Dyawanapelly S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int J Mol Sci. 2021; 22(21). https://doi.org/10.3390/ijms222111993 PMid:34769419 PMCid: PMC8584914.

Chakravarty A, Ahmad I, Singh P, Sheikh MUD, Aalam G, Sagadevan S, et al. Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity. Chemical Physics Letters. 2022; 795:139493. https://doi.org/10.1016/j.cplett.2022.139493

Al-Shmgani HSA, Mohammed WH, Sulaiman GM, Saadoon AH. Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif Cells Nanomed Biotechnol. 2017; 45(6):1-7. https:// doi.org/10.1080/21691401.2016.1220950 PMid:27534756.

Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, et al. Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res. 2011; 108(3):693-702. https://doi.org/10.1007/s00436-010-2115-4 PMid:20978795.

Fitri K, Andry M, Khairani T, Winata H, Violenta A, Lubis N, et al. Synthesis of silver nanoparticles using ethanolic extract of Nelumbo nucifera Gaertn. leaf and its cytotoxic activity against T47D and 4T1 cell lines. Rasayan Journal of Chemistrymistry 2023; 16(1):104-10. https://doi.org/10.31788/RJC.2023.1618000

Roshni K, Younis M, Ilakkiyapavai D, Basavaraju P, Puthamohan VMJ. Anticancer activity of biosynthesized silver nanoparticles using Murraya koenigii leaf extract against HT-29 colon cancer cell line. J Cancer Sci Ther 2018; 10(04):72-5. https://doi.org/10.4172/1948-5956.1000521

Hublikar LV, Ganachari SV, Patil VB, Nandi S, Honnad A. Anticancer potential of biologically synthesized silver nanoparticles using Lantana camara leaf extract. Progress in Biomaterials 2023; 12(2):155-69. https://doi.org/10.1007/s40204-023-00219-9 PMid:37093445 PMCid: PMC10154448.

Raju Nalavothula, Jahnavi Alwala, Nagati V, Manthurpadigya P. Biosynthesis of silver nanoparticles using Impatiens balsamina leaf extracts and its characterization and cytotoxic studies using human cell lines. International Journal of ChemTech Research 2015; 7(5):974-4290.

Lukman AI, Gong B, Marjo CE, Roessner U, Harris AT. Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates. J Colloid Interface Sci. 2011; 353(2):433-44. https://doi.org/10.1016/j.jcis.2010.09.088 PMid:20974473.

Zare-Bidaki M, Aramjoo H, Mizwari ZM, Mohammadparast-Tabas P, Javanshir R, MortazaviDerazkola S. Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. Arabian Journal of Chemistry. 2022; 15(6):103842. https://doi.org/10.1016/j.arabjc.2022.103842

Lin J, Huang Z, Wu H, Zhou W, Jin P, Wei P, et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014; 10(11):2006-20. https://doi.org/10.4161/auto.36293 PMid:25484080 PMCid: PMC4502813.

Pei J, Fu B, Jiang L, Sun T. Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. Int J Nanomedicine. 2019; 14:196978. https://doi.org/10.2147/IJN.S188235 PMid:30936697 PMCid: PMC6421896.

Meenakshisundaram S, Krishnamoorthy V, Jagadeesan Y, Vilwanathan R, Balaiah AJBC. Annona muricata assisted biogenic synthesis of silver nanoparticles regulates cell cycle arrest in NSCLC cell lines. 2020; 95:103451. https:// doi.org/10.1016/j.bioorg.2019.103451 PMid:31927333.

Lu W, Kang YJDC. Epithelial-mesenchymal plasticity in cancer progression and metastasis. 2019; 49(3):361-74. https://doi.org/10.1016/j.devcel.2019.04.010 PMid:310637 55 PMCid: PMC6506183.

Komai K, Niwa Y, Sasazawa Y, Simizu SJFl. Pirin regulates epithelial to mesenchymal transition independently of Bcl3-Slug signalling. 2015; 589(6):738-43. https://doi.org/10.1016/j.febslet.2015.01.040 PMid:25680527.

Habeeb Rahuman HB, Dhandapani R, Narayanan S, Palanivel V, Paramasivam R, Subbarayalu R, et al. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol.2022; 16(4):115-44. https://doi.org/10.1049/nbt2.12078 PMid:35426251 PMCid: PMC9114445.

Priya Tharishini P, Saraswathy N, Smila K, Yuvaraj D, Chandran M, Vivek PJIJCR. Green synthesis of gold nanoparticles from Cassia auriculata leaf aqueous extract and its cytotoxicity effect on in vitro cell line. 2014; 6(9):4241-50.

Smitha S, Philip D, Gopchandran KJSAPAM, Spectroscopy B. Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. 2009; 74(3):735-9. https://doi.org/10.1016/j.saa.2009.08.007 PMid:19744880.

Jafarizad A, Safaee K, Gharibian S, Omidi Y, Ekinci DJPMS. Biosynthesis and in-vitro study of gold nanoparticles using Mentha and Pelargonium extracts. 2015; 11:224-30. https://doi.org/10.1016/j.mspro.2015.11.113

Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. 2022; 26:102336. https://doi.org/10.1016/j.eti.2022.102336

Liu R, Pei Q, Shou T, Zhang W, Hu J, Li W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int J Nanomedicine. 2019; 14:4091-103. https:// doi.org/10.2147/IJN.S203222 PMid:31239669 PMCid: PMC6556565.

Bharadwaj KK, Rabha B, Pati S, Sarkar T, Choudhury BK, Barman A, et al. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules. 2021; 26(21). https://doi.org/10.3390/molecules26216389 PMid:34770796 PMCid: PMC8586976.

Ke Y, Al Aboody MS, Alturaiki W, Alsagaby SA, Alfaiz FA, Veeraraghavan VP, et al. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspasemediated apoptosis in cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol. 2019; 47(1):1938-46. https:// doi.org/10.1080/21691401.2019.1614017 PMid:31099261.

Philip D, Unni C, Aromal SA, Vidhu VK. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2011; 78(2):899-904. https://doi.org/10.1016/j.saa.2010.12.060 PMid:21215687.

Li S, Al-Misned FA, El-Serehy HA, Yang LJAJoC. Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its antihuman breast carcinoma properties in the in vitro condition. 2021;14(2):102931. https://doi.org/10.1016/j.arabjc.2020.102931

Balashanmugam P, Durai P, Balakumaran MD, Kalaichelvan PTJJoP, Biology PB. Phytosynthesized gold nanoparticles from C. roxburghii DC. leaf and their toxic effects on normal and cancer cell lines. 2016; 165:16373. https://doi.org/10.1016/j.jphotobiol.2016.10.013 PMid:27855358.

Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh DB, Harsoor V, Yalagatti MS, et al. Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2011; 2(1-6):57-65. https:// doi.org/10.1007/s12645-011-0014-8 PMid:26069485 PMCid: PMC4451508.

Ismail EH, Saqer AMA, Assirey E, Naqvi A, Okasha RM. Successful green synthesis of gold nanoparticles using a Corchorus olitorius extract and their antiproliferative effect in cancer cells. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092612 PMid:30177647 PMCid:PMC 6163711.

Kamala Priya M, Iyer PRJAN. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines. 2015; 5(4):443-8. https://doi.org/10.1007/ s13204-014-0336-z

Jain N, Jain P, Rajput D, Patil UKJM, Letters NS. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. 2021; 9(1):5. https://doi.org/10.1186/s40486-021-00131-6 PMC id:PMC8091155.

Jiao PF, Zhou HY, Chen LX, Yan B. Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. Curr Med Chem. 2011; 18(14):2086-102. https://doi.org/10.2174/092986711795656199 PMid:21517767.

Chowdhury A, Kunjiappan S, Panneerselvam T, Somasundaram B, Bhattacharjee CJInl. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. 2017; 7:91-122. https://doi.org/10.1007/s40089-017-0208-0

Ke Y, Al Aboody MS, Alturaiki W, Alsagaby SA, Alfaiz FA, Veeraraghavan VP, et al. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspasemediated apoptosis in cervical cancer cells (HeLa). Artificial Cells, Nanomedicine, and Biotechnology. 2019; 47(1):1938-46. https://doi.org/10.1080/21691401.2019.16 14017 PMid:31099261.

Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath S, Venkataraman AJC, et al. Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids and Surfaces B: Biointerfaces. 2010; 79(1):235-40. https://doi.org/10.1016/j.colsurfb.2010.04.003 PMid:20451362.

Faisal S, Jan H, Shah SA, Shah S, Khan A, Akbar MT, et al. Green synthesis of Zinc Oxide (ZnO) nanoparticles using aqueous fruit extracts of Myristica fragrans: Their characterizations and biological and environmental applications. ACS Omega. 2021; 6(14):9709-22. https://doi.org/10.1021/acsomega.1c00310 PMid:33869951 PMCid: PMC8047667.

Ashokan AP, Paulpandi M, Dinesh D, Murugan K, Vadivalagan C, Benelli GJJoCS. Toxicity on dengue mosquito vectors through Myristica fragrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). Journal of Cluster Science. 2017; 28:205-26. https://doi.org/10.1007/s10876-016-1075-y

Rani N, Rawat K, Shrivastava A, Yadav S, Gupta K, Saini KJMTP. In vitro study of green synthesized ZnO nanoparticles on human lung cancer cell lines. 2022; 49:1436-42. https://doi.org/10.1016/j.matpr.2021.07.203

Selim YA, Azb MA, Ragab I, HM Abd El-Azim M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci Rep. 2020; 10(1):3445. https://doi.org/10.1038/s41598-02060541-1 PMid:32103090 PMCid: PMC7044426.

Umamaheswari A, Prabu SL, John SA, Puratchikody A. Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol Rep (Amst). 2021; 29:e00595. https://doi.org/10.1016/j.btre.2021.e00595 PMid:33659193 PMCid: PMC7896141.

Umar H, Kavaz D, Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine. 2019; 14:87-100. https://doi.org/10.2147/ IJN.S186888 PMid:30587987 PMCid: PMC6304255.

Linima VK, Ragunathan R, Johney J. Biogenic synthesis of Ricinus communis mediated iron and silver nanoparticles and its antibacterial and antifungal activity. Heliyon. 2023; 9(5):e15743. https://doi.org/10.1016/j.heliyon.2023. e15743 PMid:37305504 PMCid: PMC10256862.

Shobha N, Nanda N, Giresha AS, Manjappa P, Sophiya P, Dharmappa K, et al. Synthesis and characterization of zinc oxide nanoparticles utilizing seed source of Ricinus communis and study of its antioxidant, antifungal and anticancer activity. 2019; 97:842-50. https://doi.org/10.1016/j.msec.2018.12.023 PMid:30678976.

Sulaiman GM, Tawfeeq AT, Naji AS. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif Cells Nanomed Biotechnol. 2018; 46(6):1215-29. https://doi.org/10.1080/21691401.2017.1366335 PMid:28826240.

Iqbal J, Abbasi BA, Yaseen T, Zahra SA, Shahbaz A, Shah SA, et al. Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications. Sci Rep. 2021; 11(1):20988. https://doi.org/10.1038/s41598-021-99839-z PMid:34697404 PMCid: PMC8545962.

Jiang J, Pi J, Cai J. The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg Chem Appl. 2018; 2018:1062562. https://doi.org/10.1155/2018/1062562 PMid:30073019 PMCid: PMC6057429.

Barzinjy AA, Hamad SM, Abdulrahman AF, Biro SJ, Ghafor AA. Biosynthesis, characterization and mechanism of formation of ZnO nanoparticles using Petroselinum crispum leaf extract. Curr Org Synth. 2020; 17(7):558-66. https://doi.org/10.2174/1570179417666200628140547 PMid:32598261.

Akhtar MJ, Ahamed M, Kumar S, Khan MM, Ahmad J, Alrokayan SA. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomedicine. 2012; 7:845-57. https://doi.org/10.2147/IJN.S29129 PMid:22393286 PMCid: PMC3289443.

Dobrucka R, Dlugaszewska J. Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J Biol Sci. 2016; 23(4):517-23. https://doi.org/10.1016/j.sjbs.2015.05.016 PMid:27298586 PMCid: PMC4890195.

Jamdagni P, Khatri P, Rana J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. Journal of King Saud University-Science. 2018; 30(2):168-75. https://doi.org/10.1016/j.jksus.2016.10.002

Santhoshkumar J, Kumar SV, Rajeshkumar. Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies. 2017; 3(4):459-65. https://doi.org/10.1016/j.reffit.2017.05.001

Bhumi G, Savithramma. Biological synthesis of zinc oxide nanoparticles from Catharanthus roseus (L.) G. don. leaf extract and validation for antibacterial activity. Int J Drug Dev Res. 2014; 6(1):208-14.

Sundaraselvan G, Quine SD. Green synthesis of zinc oxide nanoparticles using seed extract of Murraya koenigii and their antimicrobial activity against some human pathogens. J Nanosci Nanotechnol. 2017. p. 289-92.

Panda KK, Golari D, Venugopal A, Achary VMM, Phaomei G, Parinandi NL, et al. Green synthesized zinc oxide (ZnO) nanoparticles induce oxidative stress and DNA damage in Lathyrus sativus L. root bioassay system. Antioxidants (Basel). 2017; 6(2). https://doi.org/10.3390/antiox6020035 PMid:28524089 PMCid: PMC5488015.

Ali K, Dwivedi S, Azam A, Saquib Q, Al-Said MS, Alkhedhairy AA, et al. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci. 2016; 472:145-56. https://doi.org/10.1016/j.jcis.2016.03.021 PMid:27031596.

Dharshini RS, Poonkothai M, Srinivasan P, Mythili R, Syed A, Elgorban AM, et al. Nano-decolorization of methylene blue by Phyllanthus reticulatus iron nanoparticles: an ecofriendly synthesis and its antimicrobial, phytotoxicity study. Appl Nanosci. 2023; 13(3):2527-37. https://doi.org/10.1007/s13204-021-02002-3 PMid:34367863 PMCid: PMC8325042.

Sathya K, Saravanathamizhan R, Baskar G. Ultrasonic assisted green synthesis of Fe and Fe/Zn bimetallic nanoparticles for invitro cytotoxicity study against HeLa cancer cell line. Mol Biol Rep. 2018; 45(5):1397-404. https://doi.org/10.1007/s11033-018-4302-9 PMid:30128625.

Ahmadi S, Fazilati M, Nazem H, Mousavi SM. Green synthesis of magnetic nanoparticles using Satureja hortensis essential oil toward superior antibacterial/fungal and anticancer performance. Biomed Res Int. 2021; 2021:8822645. https://doi.org/10.1155/2021/8822645 PMid:33542927 PMCid: PMC7840253.

Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine. 2022; 96:153890. https://doi.org/10.1016/j.phymed.2021.153890 PMid:35026510.