Odd Factor Decomposition of E-Super Magic Graphs
DOI:
https://doi.org/10.15613/sijrs/2016/v3i2/157296Keywords:
F-Decomposable Graph, F-E Super Magic Labeling, (2k 1)-Factor E-Super Magic Decomposition of Graphs.Abstract
An F-magic labeling in an F-decomposable graph G of order p and size q is a bijection f :V (G)∪ E(G)→{1,2....p + q} such that for every copy F in the decomposition, ΣVeV(F)f(v) + Σe∈E(F)f(e) is constant. The function f is said to be F-E super magic if f (E(G)) = {1,2,....q}. This article contains, a necessary and some sufficient conditions for some even regular and odd regular graphs G to have an (2k +1) - factor E-super magic decomposition, for k ≥1.Downloads
Published
Issue
Section
References
Andrews W S. Magic Squares and Cubes. Dover. 1960.
Marr A M. and Wallis W D. Magic Graphs. Second Edition. Boston: Birkhauser-Basel; 2013. https://doi.org/10.1007/9780-8176-8391-7
Gallian J A. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics. 2009; 16: DS6
MacDougall J A, Miller M, Slamin, Wallis W D. Vertex Magic Total Labeling of Graphs. Util.Math. 2002; 61: 3–21.
Marimuthu G, Balakrishnan M. E-Super Vertex Magic Labeling Of Graphs. Discrete Appl. Math. 2012; 160: 1766– 74. https://doi.org/10.1016/j.dam.2012.03.016
Petersen J. Die Theories Der Regularen Graphs. Acta Math.1891; 15: 193–220. https://doi.org/10.1007/BF02392606
Sedlacek J. On Magic Graphs. Mathematica Slovaca. 1976; 26: 329–335.
Subbiah S P, Pandimadevi J. H-E Super Magic Decomposition of Graphs. Electronic Journal of Graph Theory and Applications. 2014; 2: 115–128. https://doi.org/10.5614/ ejgta.2014.2.2.4
Swaminathan V, Jeyanthi P. Super Vertex-Magic Labeling. Indian J. Pure and App. Math. 2003; 34(6): 935-939.
Wang T M, Zhang G H. Note on E-Super Vertex Magic Graphs. Discrete Applied Mathematics. 2014; 178: 160–2. https://doi.org/10.1016/j.dam.2014.06.009