Odd Factor Decomposition of E-Super Magic Graphs

Jump To References Section

Authors

  • Department of Mathematics, Vellalar College for Women, Erode – 638 012, Tamilnadu ,IN
  • Department of Mathematics, Vellalar College for Women, Erode – 638 012, Tamilnadu ,IN

DOI:

https://doi.org/10.15613/sijrs/2016/v3i2/157296

Keywords:

F-Decomposable Graph, F-E Super Magic Labeling, (2k 1)-Factor E-Super Magic Decomposition of Graphs.

Abstract

An F-magic labeling in an F-decomposable graph G of order p and size q is a bijection f :V (G)∪ E(G)→{1,2....p + q} such that for every copy F in the decomposition, ΣVeV(F)f(v) + Σe∈E(F)f(e) is constant. The function f is said to be F-E super magic if f (E(G)) = {1,2,....q}. This article contains, a necessary and some sufficient conditions for some even regular and odd regular graphs G to have an (2k +1) - factor E-super magic decomposition, for k ≥1.

Downloads

Published

2016-12-01

Issue

Section

Mathematical Science

 

References

Andrews W S. Magic Squares and Cubes. Dover. 1960.

Marr A M. and Wallis W D. Magic Graphs. Second Edition. Boston: Birkhauser-Basel; 2013. https://doi.org/10.1007/9780-8176-8391-7

Gallian J A. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics. 2009; 16: DS6

MacDougall J A, Miller M, Slamin, Wallis W D. Vertex Magic Total Labeling of Graphs. Util.Math. 2002; 61: 3–21.

Marimuthu G, Balakrishnan M. E-Super Vertex Magic Labeling Of Graphs. Discrete Appl. Math. 2012; 160: 1766– 74. https://doi.org/10.1016/j.dam.2012.03.016

Petersen J. Die Theories Der Regularen Graphs. Acta Math.1891; 15: 193–220. https://doi.org/10.1007/BF02392606

Sedlacek J. On Magic Graphs. Mathematica Slovaca. 1976; 26: 329–335.

Subbiah S P, Pandimadevi J. H-E Super Magic Decomposition of Graphs. Electronic Journal of Graph Theory and Applications. 2014; 2: 115–128. https://doi.org/10.5614/ ejgta.2014.2.2.4

Swaminathan V, Jeyanthi P. Super Vertex-Magic Labeling. Indian J. Pure and App. Math. 2003; 34(6): 935-939.

Wang T M, Zhang G H. Note on E-Super Vertex Magic Graphs. Discrete Applied Mathematics. 2014; 178: 160–2. https://doi.org/10.1016/j.dam.2014.06.009