Some Properties of Interval-Valued Intuitionistic Anti Fuzzy Lie Primary Ideal
DOI:
https://doi.org/10.15613/sijrs/2015/v2i2/114280Keywords:
Intuitionistic Fuzzy Set, Intuitionistic Anti Fuzzy Ideal, Intuitionistic Anti Fuzzy Primary Ideal, Intuitionistic Anti Fuzzy Semi-Primary Ideal, Interval-Valued Intuitionistic Anti Fuzzy Lie Primary Ideals.Abstract
In this paper, the theory of fuzzy semiprimary ideal [16] is extended by introducing intuitionistic anti fuzzy primary ideals as well as intuitionistic anti fuzzy semiprimary ideals in rings. Similarly, Interval-Valued Intuitionistic Anti Fuzzy Lie Primary Ideals (IVIAFLPI) is defined. Various properties of IVIAFLPI are discussed. Finally, Interval-Valued Intuitionistic Fuzzy Lie Semiprimary Ideals (IVIAFLSPI) is established.Downloads
Published
Issue
Section
References
Atanassov K. T., “Intuitionistic fuzzy setsâ€, Fuzzy Sets and Systems, Vol. 20(1), p. 87–96, 1986.
Atanassov K., “Operators over interval-valued intuitionistic fuzzy setsâ€, Fuzzy Sets and Systems, Vol. 64(2), p. 159–174, 1994.
Chakrabarty K., Biswas R., Nanda S., “A note on union and intersection of intuitionistic fuzzy setsâ€, Notes on Intuitionistic Fuzzy Sets, Vol. 3(4), 1997.
Deschrijver G., “Arithmetic operators in interval-valued fuzzy theoryâ€, Information Sciences, Vol. 177, p. 2906–2924, 2007.
Humphreys J. E., Introduction to lie algebras and representation theory, springer, New York.
Qin K., Qiao Q., Chen C., “Some properties of fuzzy Lie algebrasâ€. The Journal of Fuzzy Mathematics, Vol. 9(4), p. 985–989, 2001.
Akram M., Dudek W. A., “Interval-valued intuitionistic fuzzy Lie ideals of Lie algebrasâ€, World Applied Sciences Journal, Vol. 7, p. 812–819, 2009.
Bhowmik M., Pal M., “Generalized interval-valued intuitionistic fuzzy setsâ€, International Journal Fuzzy Mathematics, Vol. 18(2), p. 357–371, 2010.
Palanivelrajan M., Nandakumar S., “Some properties of intuitionistic fuzzy primary and semiprimary idealsâ€, Notes on Intuitionistic Fuzzy Sets, Vol. 18(3), p. 68–74, 2012.
Sharma P. K., “On intuitionistic Anti-fuzzy ideal and Quotient ring, Global Research publicationsâ€, Vol. 4(2), p. 109–119, 2012.
Rajesh K., “Fuzzy semiprimary ideals of ringsâ€, Fuzzy Sets and Systems, Vol. 42, p. 263–272, 1991.
Zadeh L. A., “Fuzzy setsâ€, Information and Control, Vol. 8, p. 338–353, 1965.
Available from: www.idosi.org
Available from: www.ijmttjournal.org 15. Available from: www.scialert.net
Available from: www.ifigenia.org
Available from: www.m-hikari.com
Available from: www.quasigroups.eu