Fluorescent pseudomonads, an antidote and drought stress mitigating PGPR from groundnut (Arachis hypogaea L.) rhizosphere
DOI:
https://doi.org/10.18311/jbc/2021/29563Keywords:
Antibiotics, drought stress, fluorescent pseudomonads, metabolites, polyethylene glycol 6000Abstract
Fluorescent pseudomonads drawn broad attention as production of secondary metabolites, phytohormones, siderophores, enzymes, antibiotics, hydrogen cyanide and volatile compounds. The present study was to exhilarate traits of plant growth promotion by fluorescent pseudomonads under drought stress. Fifty one efficient bacterial isolates were taken to evaluate their growth in different concentrations of polyethylene glycol 6000 (PEG) at 0 % (-0.05 MPa), 10 % (-0.65 MPa), 20 % (-1.57 MPa), 30 % (-2.17 MPa) and 40 % (-2.70 MPa). On the basis of growth at higher PEG (40 %) concentration, four efficient bacteria were preferred. Plant growth promoting traits such as IAA, exopolysachharides (EPS) production, ACC deaminase activity, phosphate solubilization and potassium releasing characters were tested for the selected drought tolerant fluorescent pseudomonads. Among four efficient strains, two strains i.e., PCKR-2 showed P-solubilization Index was (3.80 mm), followed by AGVS (4.33 mm), PCKS (4.12 mm) and PVAS (2.28 mm). Data on potassium solubilization activity show that out of two isolates, PCKR-2 showed the highest solubilization zone (3.50 mm), followed by PCKS (3.17 mm), AGVS (2.83 mm) and PVAS (2.50 mm). The findings suggests that the use of fluorescent pseudomonads will aid better plant growth promotion under drought stress.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 BADDE PRASANNA KUMAR, BADDE PRASANNA KUMAR
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2022-07-06
Published 2021-12-01
References
Ali SF, Rawat LS, Meghvansi MK, Mahna SK. 2009. Selection of stress-tolerant rhizobial isolates of wild legumes growing in dry regions of Rajasthan. J. Agric. Biol. Sci., 4: 13-18.
Ashok KM, Anandapandian KTK, Parthiban K. 2011. Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz. Arch. Biol. Technol., 54(2): 259-54265. https://doi.org/10.1590/S151689132011000200006 DOI: https://doi.org/10.1590/S1516-89132011000200006
Bashan Y, Holguin G, Bashan LE. 2004. Azospirillum plant relationship: physiological, molecular, agricultural and environmental advances. Can. J. Microbiol., 50(8): 521- 577. https://doi.org/10.1139/w04-035 PMid:15467782 DOI: https://doi.org/10.1139/w04-035
Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microbiol. Biotechnol., 28: 1327-1350. https://doi. org/10.1007/s11274-011-0979-9 PMid:22805914 DOI: https://doi.org/10.1007/s11274-011-0979-9
Bultreys A, Gheysen I, Wathelet B, Maraite H, Hoffmann E. 2003. High-Performance Liquid Chromatography Analyses of Pyoverdin Siderophores Differentiate among Phytopathogenic Fluorescent Pseudomonas Species. Appl. Environ. Microbiol., 69: 1143-1153. https://doi.org/10.1128/AEM.69.2.1143-1153.2003 PMid:12571041 PMCid:PMC143633 DOI: https://doi.org/10.1128/AEM.69.2.1143-1153.2003
Busse MD, Bottomley PJ. 1989. Growth and nodulation responses of Rhizobium meliloti to water stress induced by permeating and nonpermeating solutes. Appl. Environ. Microbiol., 55(10): 2431-2446. https://doi.org/10.1128/aem.55.10.2431-2436.1989 PMid:16348021 PMCid:PMC203100 DOI: https://doi.org/10.1128/aem.55.10.2431-2436.1989
Dong X, Lv L, Wang W, Liu Y, Yin C, Xu Q, Yan H, Fu J, Liu X. 2019. Differences in distribution of potassium solubilizing bacteria in forest and plantation soils in myanmar. Int. J. Environ. Res. Public Health, 16(5): 2-14. https://doi.org/10.3390/ijerph16050700 PMid:30818756 PMCid:PMC6427479 DOI: https://doi.org/10.3390/ijerph16050700
Geng LL, Shao GX, Raymond B, Wang ML, Sun XX, Shu CL, Zhang J. 2018. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome. Microbiol. Res., 211: 13-20. https://doi.org/10.1016/j.micres.2018.02.008 PMid:29705202 DOI: https://doi.org/10.1016/j.micres.2018.02.008
Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 24: 20-12. https://doi.org/10.6064/2012/963401 PMid:24278762 PMCid:PMC3820493 DOI: https://doi.org/10.6064/2012/963401
Hepper CM. 1975. Extracellular polysaccharides of soil bacteria. In: (Eds) Walker, N. Soil Microbiology: A critical review. Wiley, New York. 93-111.
Kachhap S, Chaudhary A, Singh SD. 2015. Effect of elevatedtemperature on some functional bacteria in groundnut (Arachis hypogaea L.) rhizosphere at different phenological stages. The Bioscan. 10(2): 499-504.
Khamna S, Yokota A, Peberdy JF, Lumyong S. 2010. Indole- 3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian J. Biosci., 4: 21-29. https://doi.org/10.5053/ejobios.2010.4.0.4 DOI: https://doi.org/10.5053/ejobios.2010.4.0.4
Lugtenberg BJ, Dekkers L, Bloemberg GV. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol., 39: 461- 490. https://doi.org/10.1146/annurev.phyto.39.1.461 PMid:11701873 DOI: https://doi.org/10.1146/annurev.phyto.39.1.461
Mateus JR, Marques JM, DalRio I., Vollu RE, Coelho MRR, Seldin L. 2019. Response of the microbial community associated with sweet potato (Ipomoea batatas) to Bacillus safensis and Bacillus velezensis strains. Antonie Van Leeuwenhoek, 112: 501-512. https://doi.org/10.1007/s10482-018-1181-y PMid:30306462 DOI: https://doi.org/10.1007/s10482-018-1181-y
Nayer M, Heidari R. 2008. Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl. Sci. J., 33: 448-453.
Norkina SP, Pumpyansakya LV. 1956. Certain properties of silicate bacteria dokl. Jpn. J. Crop Sci., 28: 35-40.
Renuga G. 2005. Characterization of ACC Deaminase in plant growth promoting Pseudomonas from tannery sludge. J. Ind. Pollut. Control, 21(2): 361-370.
Saber FMA, Abdelhafez AA, Hassan EA, Ramadan EM. 2015. Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Ann. Agric. Sci., 60: 131-140. https://doi.org/10.1016/j.aoas.2015.04.007 DOI: https://doi.org/10.1016/j.aoas.2015.04.007
Sandhya VZAS, Grover M, Reddy G, Venkateswarlu B. 2009. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol. Fertil. Soils, 46: 17-26. https://doi.org/10.1007/s00374-009-0401-z DOI: https://doi.org/10.1007/s00374-009-0401-z
Sandhya V, Zulfikar, Ali S, Grover M, Reddy G, Bandi V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact., 6: 1-14. https://doi.org/10.1080/17429145.2010.535178
Saravanan D, Radhakrishnan M, Balagurunathan R. 2016. Isolation of plant growth promoting substance producing bacteria from Niligiri hills with special reference to phosphatase enzyme. J. Chem. Pharm. Res., 8: 698-703.
Sengupta A, Gunri KS, Biswas T, Saha J. 2018. Efficacies of freshly isolated phosphate solubilising bacteria (PSB) on growth promotion in groundnut (Arachis hypogaea L.) upon commonly used PSB biofertilizers in eastern India. Legume Research an International Journal, 4020(1-7): 1-7. https://doi.org/10.18805/LR-4020 DOI: https://doi.org/10.18805/LR-4020
Sharma S, Kaur M, Durga P. 2014. Isolation of fluorescent Pseudomonas strain from temperate zone of Himachal Pradesh and their evaluation as plant growth promoting rhizobacteria (PGPR). The Bioscan, 9(1): 323-328.
Shukla UK, Kumar A, Srivastava D, Kumar D, Kumar A, Prasad S, Kumar P, Bharti PK, Poonam, Chauhan T. 2016. Evaluation of diversity of free living plant growth promoting rhizobacteria of wheat grown in saline soil. The Bioscan, 11(1): 467-471.
Shweta B, Maheshwari DK, Dubey RC, Arora DS, Bajpai VK, Kang SC. 2008. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogaea L.). J. Microbiol. Biotechnol., 18(9): 1578- 1583.
Sugumaran P, Janarthanam B. 2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J. Agric. Sci., 3(3): 350- 355.
Torbaghan EM, Lakzian A, Astaraei RA, Fotovat A, Besharati H. 2017. Measurement of ACC-deaminase production in halophilic, alkalophilic and haloalkalophilic bacterial isolates in soil. Int. Biol. Biomed. J., 3(4): 194-202. https://doi.org/10.4314/jfas.8vi2s.80 DOI: https://doi.org/10.4314/jfas.8vi2s.80
Vardharajula S, Zulfikar AS, Grover M, Reddy G, Bandi V. 2011. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6(1): 1-14. https://doi.org/10.1080/17429145.2010.535178 DOI: https://doi.org/10.1080/17429145.2010.535178
Venkateswarlu B, Desai S, Prasad YG. 2008. Agriculturally important microorganisms for stressed ecosystems: Challenges in technology development and application’’. In: Khachatourians, G. G, Arora, D. K, Rajendran, T. P, Srivastava, A. K (eds). Agriculturally Important Microorganisms, Academic World., Bhopal. 1: 225-246.