Larvicidal effect of Pongamia pinnata plant extracts against Papilio demoleus Linnaeus (Insecta: Lepidoptera: Papilionidae)
DOI:
https://doi.org/10.18311/jbc/2023/32497Keywords:
Biopesticides, citrus butterfly larvae, Pongamia seed oil nanoemulsion, Pongamia seed extractAbstract
Larvae of the citrus butterfly, Papilio demoleus are serious pests in citrus orchards. Since synthetic pesticides have several ill effects on human health and the ecosystem, biopesticides are feasible alternative to synthetic pesticides. Indian beech tree, Pongamia pinnata plant extracts are well known for their medicinal and pesticidal properties. So, a study was carried out to evaluate P. pinnata plant’s aqueous leaf and seed extracts, and seed oil nanoemulsion at 25, 50, 100, 200, and 400 PPM concentrations against the 4th instar larvae of P. demoleus. All three test compounds showed concentration-dependent larvicidal activity. Comparatively, leaf extracts showed better larvicidal activity than seed extracts and nanoemulsion of the seed oil. The highest mortality was observed with leaf, seed extracts, and seed oil emulsions at 82.61%, 78.26%, and 73.91% respectively, at 400 PPM concentration. LC50 and LC90 values were lowest for leaf extracts (57.97 and 855.93 PPM), while the highest for seed oil nanoemulsion (107.09 and 1947.90 PPM). This is the first report of the efficacy P. pinnata leaf and seed extracts and seed oil nano emulsions against 4th instar larvae of P. demoleus.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 MAHESH LINGAKARI, MADHAVI MADDALA, SRIKANTH BANDI
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2023-08-14
Published 2023-10-10
References
Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol, 18: 265-266. https://doi.org/10.1093/jee/18.2.265a DOI: https://doi.org/10.1093/jee/18.2.265a
Ali, M., Mohamed, D. S., Shaurub, E. H., and Elsayed, A. M. 2017. Antifeedant activity and some biochemical effects of garlic and lemon essential oils on Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae). J Entomol Zool Stud, 5(3): 1476-1482.
Arivoli, S., and Tennyson, S. 2013. Antifeedant activity, developmental indices and morphogenetic variations of plant extracts against Spodoptera litura (Fab) (Lepidoptera: Noctuidae). J Entomol Zool Stud, 1(4): 87-96.
Bashir, E. M., and El Shafie, H. A. F. 2013. Insecticidal and antifeedant efficacy of Jatropha oil extract against the desert locust, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). Am J Agric Biol Sci, 4(3): 260-267. https://doi.org/10.5251/abjna.2013.4.3.260.267 DOI: https://doi.org/10.5251/abjna.2013.4.3.260.267
Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P., Speck, T., and Stein, W. E. 1998. Early evolution of land plants: Phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Evol Syst, 29: 263-292. https://doi.org/10.1146/annurev.ecolsys.29.1.263 DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.263
Dimetri, N. Z. 2014. Different families as a bioresource for pesticides. In: Advances in Plant Biopesticides (Ed. D. Singh), Chapter 1. https://doi.org/10.1007/978-81-322-2006-0 DOI: https://doi.org/10.1007/978-81-322-2006-0_1
Ehrlich, P. R., and Raven, P. H. 1964. Butterflies and plants: A study in coevolution. Evolution, 18: 586-608. https://doi.org/10.1111/j.1558-5646.1964.tb01674.x DOI: https://doi.org/10.1111/j.1558-5646.1964.tb01674.x
FAO. 2021. Scientific review on the impact of climate change on plant pests - A global challenge to prevent and mitigate plant pest risks in agriculture, forestry and ecosystems. https://www.fao.org/news/story/en/item/1402920/icode/
Fritz, R. S., and Simms, E. L. 1992. Plant resistance to herbivores and pathogens: Ecology, Evolution, and Genetics. University of Chicago Press. https://doi.org/10.7208/chicago/9780226924854.001.0001 DOI: https://doi.org/10.7208/chicago/9780226924854.001.0001
Isman, M. 2002. Insect antifeedants. Pestic Outlook, 152- 157. https://doi.org/10.1039/b206507j DOI: https://doi.org/10.1039/b206507j
Jayaraj, S. 2005. Use and abuse of chemical pesticides need for safer pesticides for sustainable integrated pest management. In: Ignacimuthu, S and Jayaraj, S (Eds.), Sustainable Insect Pest Management. Narosa Publishing House Delhi, 253-265.
Kesari, V, Das, A, and Rangan, L. 2010. Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential biofuel crop. Biomass and Bioenergy, 34(1): 108-115. https://doi.org/10.1016/j.biombioe.2009.10.006 DOI: https://doi.org/10.1016/j.biombioe.2009.10.006
Ko, F. C., Pan, W. L., Cheng, J. O., Chen, T. H., Kuo, F. W., Kao, S-J., Chang, C-W, Ho, H-C, Wang, W-H., and Fang, L-S. 2018. Persistent organic pollutants in Antarctic notothenioid fish and invertebrates associated with trophic levels. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0194147 DOI: https://doi.org/10.1371/journal.pone.0194147
Koul, O. 2008. Phytochemicals and insect control: An antifeedant approach. CRC Crit Rev Plant Sci, 27(1): 1-24. https://doi.org/10.1080/07352680802053908 DOI: https://doi.org/10.1080/07352680802053908
Kumar, M., and Singh, R. 2002. Potential of Pongamia glabra Vent as an insecticide of plant origin. Biol Agric Hortic, 20(1): 29-50. https://doi.org/10.1080/01448765.2002.9754947 DOI: https://doi.org/10.1080/01448765.2002.9754947
Lakshmanan, S., Gokulakrishnan, J., Baranitharan, M., and Thushimenan, S. 2017. Antifeedant, larvicidal and oviposition detergent activity of Pongamia pinnata and Ceiba pentandra against pod borer larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). Int J Zool Appl Biosci, 2(4): 185-189.
Lewis, D. S. 2009. Lime Swallowtail, Chequered Swallowtail, Citrus Swallowtail Papilio demoleus L Linnaeus (Lepidoptera: Papilionidae) ENY 444/IN786, 1/2009. http://edis.ifas.ufl.edu. https://doi.org/10.32473/edis-in786-2009 DOI: https://doi.org/10.32473/edis-in786-2009
Morales, P., Roscales, J. L., Muñoz-Arnanz, J., Barbosa, A., and Jiménez, B. 2022. Evaluation of PCDD/Fs, PCBs and PBDEs in two penguin species from Antarctica. Chemosphere, 286:131871. https://doi.org/10.1016/j.chemosphere.2021.131871 DOI: https://doi.org/10.1016/j.chemosphere.2021.131871
NHB. 2017. Annual Report. https://nhb.gov.in/statistics/State_Level/2017-18-(Final).pdf
NHB. 2020-21. Annual Report. https://nhb.gov.in/pdf/AR-2020-21.pdf
Packiam, S. M., Baskar, K., and Ignacimuthu, S. 2012. Ovicidal activity of botanical oil formulations against Helicoverpa armigera Hubner and Spodoptera litura Fabricius (Lepidoptera: Noctuidae). Asian Pac J Trop Biomed, 2(3): S1241-S1244. https://doi.org/10.1016/S2221-1691(12)60393-1 DOI: https://doi.org/10.1016/S2221-1691(12)60393-1
Panda, N., and Khush, G. S. 1995. Host Plant Resistance to Insects. CABI/IRRI, Wallingford, UK.
Pavela, R., and Herda, G. 2007. Repellent effects of pongam oil on settlement and oviposition of the common greenhouse whitefly Trialeurodes vaporariorum on chrysanthemum. Insect Sci, 14(3): 219-224. https://doi.org/10.1111/j.1744-7917.2007.00147.x DOI: https://doi.org/10.1111/j.1744-7917.2007.00147.x
Raghav, D., Mahanty, S., and Rathinasamy, K. 2019. Biochemical and toxicological investigation of karanjin, a bio-pesticide isolated from Pongamia seed oil. Pestic Biochem Phys, 157: 108-121. https://doi.org/10.1016/j.pestbp.2019.03.011 DOI: https://doi.org/10.1016/j.pestbp.2019.03.011
Saroukolai, A. T., Nouri-Ganbalani, G., Rafiee-Dastjerdi, H., and Hadian, J. 2014. Antifeedant activity and toxicity of some plant essential oils to Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Plant Prot Sci, 50(4): 207-216. https://doi.org/10.17221/9/2014-PPS DOI: https://doi.org/10.17221/9/2014-PPS
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., and Thukral, A. K. 2019. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci, 1(14). https://doi.org/10.1007/s42452-019-1485-1 DOI: https://doi.org/10.1007/s42452-019-1485-1
Shoba, F. G., and Thomas, M. 2001. Study of antidiarrhoeal activity of four medicinal plants in castor-oil induced diarrhoea. J. Ethnopharmacol, 76(1): 73–76. https://doi.org/10.1016/S0378-8741(00)00379-2 DOI: https://doi.org/10.1016/S0378-8741(00)00379-2
Siegwart, M., Graillot, B., Lopez, C. B., Besse, S., Bardin, M., Nicot, P. C., and Lopez-Ferber, M. 2015. Resistance to bio-insecticides or how to enhance their sustainability: A review. Front Plant Sci, 6. https://doi.org/10.3389/fpls.2015.00381 DOI: https://doi.org/10.3389/fpls.2015.00381
Stepanycheva, E. A., Pazyuk, I. M., Chermenskaya, T. D., Petrova, M. O., and Pavela, R. 2020. Comparative evaluation of reactions of the Western Flower Thrips Frankliniella occidentalis Perg. (Thysanoptera, Thripidae) and the predatory bug Orius laevigatus Fieber (Heteroptera, Miridae) to Pongamia pinnata (L.) Pierre oil. Entomol Rev, 100(4): 449-455. https://doi.org/10.1134/S0013873820040028 DOI: https://doi.org/10.1134/S0013873820040028
Tran, D. H., Nguyen, T. G., and Bui, N. H. 2022. Efficacy of the extract from pongam (Pongamia pinnata) leaves against the cassava pink mealybug (Phenacoccus manihoti Matile-Ferrero) under laboratory conditions. Crops is Res, 23(1): 197-201. https://doi.org/10.31830/2348-7542.2022.027 DOI: https://doi.org/10.31830/2348-7542.2022.027
Valbuena, D., Cely-Santos, M., and Obregón, D. 2021. Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. J Environ Manage, 286:112141. https://doi.org/10.1016/j.jenvman.2021.112141 DOI: https://doi.org/10.1016/j.jenvman.2021.112141
Widjayanti, T., Tarno, H., and Anggiah, G. 2018. Antifeedant activity and toxicity of Pontianak citrus peel extract (PCPE) against Spodoptera litura Fab (Lepidoptera: Noctuidae). Biosci Res, 15(1): 316-324.
Wolmarans, N. J., Bervoets, L., Gerber, R., Yohannes, Y. B., Nakayama, S. M., Ikenaka, Y., … Wepener, V. 2021. Bioaccumulation of DDT and other organochlorine pesticides in amphibians from two conservation areas within malaria risk regions of South Africa. Chemosphere, 274:129956. https://doi.org/10.1016/j.chemosphere.2021.129956 DOI: https://doi.org/10.1016/j.chemosphere.2021.129956