Optimization of culture conditions for the production, antifungal activity and characterization of secondary metabolites of Trichoderma longibrachiatum

Jump To References Section

Authors

  • Department of Microbiology, Rathnavel Subramaniam (RVS) College of Arts and Science, Sulur, Coimbatore – 641402, Tamil Nadu ,IN
  • Department of Microbiology, Rathnavel Subramaniam (RVS) College of Arts and Science, Sulur, Coimbatore – 641402, Tamil Nadu ,IN
  • Research and Development Centre, T. Stanes and Company Limited, Coimbatore – 641018, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jbc/2023/34700

Keywords:

Antifungal activity, bioactive compounds, endophytic fungus, optimum conditions, Trichoderma longibrachiatum

Abstract

The present study was intended to optimize the culture conditions for secondary metabolite production by endophytic fungi. Based on the morphology and phylogeny, the fungus was identified as Trichoderma longibrachiatum isolated from brinjal leaf based on morphological characterization. The antifungal activity was evaluated against phytopathogens such as Macrophomina phaseolina, Phytopthora infestans, Colletotrichum falcatum and Colletotrichum gloeosporioides through the overlapping method, culture filtrate and organic fraction from Potato dextrose both as a growth medium. The organic fraction exhibited a significant antifungal activity, while modifications in medium composition may possess a major impact on the quantity and quality of secondary metabolites production. To achieve maximum metabolite production, the growth of the culture was optimized with screening of basal media, carbon, nitrogen, pH, trace elements and incubation period. The final optimized fermentation conditions were Minimal ereavis broth as basal media; glucose and sucrose as carbon source; Peptone and Yeast extract as nitrogen source, sodium nitrate as precursor; pH as 6; and incubation period as 7 days at 28°C. This optimization resulted in antifungal activity of 47.19-60.67% against M. phaseolina, P. infestans, C. falcatum, and C. gloeosporioides which was higher than that before optimization (43.80%). GCMS revealed distinct metabolites of T. longibrachiatum, comprising antifungal metabolites and molecules with additional bioactivities. These results strengthen ongoing research on disease control in agriculture by emphasizing the biocontrol potential of T. longibrachiatum isolated from brinjal phyllosphere against plant pathogenic fungi.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-09-30

How to Cite

PRIYA, R., BALACHANDAR, S., & PRABHAKARAN, N. (2023). Optimization of culture conditions for the production, antifungal activity and characterization of secondary metabolites of <i>Trichoderma longibrachiatum</i>. Journal of Biological Control, 37(3), 131–144. https://doi.org/10.18311/jbc/2023/34700

Issue

Section

Research Articles
Received 2023-08-11
Accepted 2023-10-25
Published 2023-09-30

 

References

Anees, M., Azim, R., Ur Rehman, S., Jamil, M., El Hendawy, S. E., and Al-Suhaiban, N. A. 2018. Antifungal potential of Trichoderma strains originated from north western regions of Pakistan against the plant pathogens. Pak J Bot, 50(5): 2031-2040.

Cherkupally, R., Kota, S. R., Amballa, H., and Reddy, B. N. 2017. In vitro antifungal potential of plant extracts against Fusarium oxysporum, Rhizoctonia solani and Macrophomina phaseolina. Ann Plant Sci, 6(9): 1676. https://doi.org/10.21746/aps.2017.9.2 DOI: https://doi.org/10.21746/aps.2017.9.2

Choez-Guaranda, I., Ivan, Espinoza-Lozano, F., Reyes-Araujo, D., Romero, C., Manzano, P., Galarza, L., and Sosa D. 2023. Chemical Characterization of Trichoderma sp. extracts with antifungal activity against cocoa pathogens. Molecules, 28(7): 3208. https://doi. org/10.3390/molecules28073208 PMid:37049971 PMCid:PMC10095870 DOI: https://doi.org/10.3390/molecules28073208

Das, S., and Pattanayak, S. 2020. Integrated disease management on grapes–a pioneer of a reformed movement toward sustainability. Int J Curr Microbiol Appl Sci, 9(5): 993-1005. https://doi.org/10.20546/ijcmas.2020.905.109 DOI: https://doi.org/10.20546/ijcmas.2020.905.109

Demain, A. L., and Sanchez, S. 2009. Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo), 62: 5-16; https://doi.org/10.1038/ja.2008.16 PMid:19132 062 PMCid:PMC7094699 DOI: https://doi.org/10.1038/ja.2008.16

Evans, H. C., Holmes, K. A., and Thomas, S. E. 2003. Endophytes and mycoparasites associated with an indigenous forest tree, Theobroma gileri, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycol Prog, 2(2): 149-160. https://doi.org/10.1007/s11557-006-0053-4 DOI: https://doi.org/10.1007/s11557-006-0053-4

Guerrero-Rodriguez, E., Solis-Gaona, S., Hernandez-Castillo, F. D., Flores-Olivas, A., Sandoval-Lopez, V., and Jasso-Cantu, V. 2007. In vitro biological activity of extracts of Flourensia cernua D.C. on postharvest pathogens: Alternaria alternata (Fr.:Fr.) Keissl., Colletotrichum gloeosporioides (Penz.) Penz. y Sacc. y Penicillium digitatum (Pers.:Fr.) Sacc. Rev. mex. Fitopatol, 25(1): 48-53.

Hammad, M., Guillemette, T., Alem, M., Bastide, F., and Louanchi, M. 2021. First report of three species of Trichoderma isolated from the rhizosphere in Algeria and the high antagonistic effect of Trichoderma brevicompactum to control grey mould disease of tomato. Egypt J Biol Pest Control, 31: 85. https://doi.org/10.1186/s41938-021-00423-4 DOI: https://doi.org/10.1186/s41938-021-00423-4

Hanada, R. E., Pomella, A. W. V., Soberanis, W., Loguercio, L. L., and Pereira, J. O. 2009. Biocontrol potential of Trichoderma martiale against the black-pod disease (Phytophthora palmivora) of cacao. Biol Cont, 50: 143-149. https://doi.org/10.1016/j.biocontrol.2009.04.005 DOI: https://doi.org/10.1016/j.biocontrol.2009.04.005

Harman. G. E., Howell. C. R., Viterbo, A, Chet. I., and Lorito. 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol, 2: 43-56. https://doi.org/10.1038/nrmicro797 PMid:15035008 DOI: https://doi.org/10.1038/nrmicro797

Hateet, R. R., Hassan, Z. A., Al-Mussawi, A. A., and Banoon, S. R. 2021. Optimization of cultural conditions affecting improved bioactive metabolite production by endophytic fungus Trichoderma harzianum. Revista Bionatura, 6(4): 2187-2192. https://doi.org/10.21931/RB/2021.06.04.8 DOI: https://doi.org/10.21931/RB/2021.06.04.8

Jangir, M., and Sharma, S. 2019. Target and non-target effects of dual inoculation of biocontrol agents against Fusarium wilt in Solanum lycopersicum. Biol Control, 138: 104069. https://doi.org/10.1016/j.biocontrol.2019.104069 DOI: https://doi.org/10.1016/j.biocontrol.2019.104069

Kumar, K., Amaresan, N., Bhagat, S., Madhuri, K., and Srivastava, R. C. 2012. Isolation and characterization of Trichoderma sp. for antagonistic activity against root rot and foliar pathogens. Indian J Microbiol, 52(2):137-44. https://doi.org/10.1007/s12088-011-0205-3 PMid:2372 9873 PMCid:PMC3386440 DOI: https://doi.org/10.1007/s12088-011-0205-3

Li, R., Chen, W., Cai, F., Zhao Z., Gao, R., and Long, X. 2017. Effects of Trichoderma-enriched biofertilizer on tomato plant growth and fruit quality. J Nanjing Agric Univ, 40(3): 464-472.

Macias-Rodríguez, L., Contreras-Cornejo, H. A., Adame-Garnica, S. G., Del-Val, E., and Larsen, J. 2020. The interactions of Trichoderma at multiple trophic levels: Inter-kingdom communication. Microbiol Res, 240: 126552. https://doi.org/10.1016/j.micres.2020.126552 PMid:32659716 DOI: https://doi.org/10.1016/j.micres.2020.126552

Marques, E., Abreu, V. P. D., Silva, M. R., Castro, K. H. M. D., Cenci, C. M. L. D. S., Almeida, A. C., and Cunha, M. G. D. 2022. Antifungal potential of Trichoderma afroharzianum metabolites. Intl J Agric Biol, 28: 181-186.

Medeiros, H. A., Araujo Filho, J. V., Grassi de Freitas, L., Castillo, P., Rubio, M. B., and Hermosa, R. 2017. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep, 7(1): 40216. https://doi.org/10.1038/srep40216 PMid:28071749 PMCid:PMC5223212 DOI: https://doi.org/10.1038/srep40216

Morais, E. M., Silva, A. A. R., de Sousa F. W. A., de Azevedo I. M. B., Silva H. F., Santos, A. M. G. , Beserra Jr, J. E. A., de Carvalho, C. P., Eberlin, M. N., Porcari, A. M., and Araújo, F. D. S. 2022. Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi. PLoS One, 17(4): e0265824. https://doi.org/10.1371/journal.pone.0265824 PMid:35427356 PMCid:PMC9012399 DOI: https://doi.org/10.1371/journal.pone.0265824

Muhammad, I., Kamal, A. A., M., Magdi, M. A. A., and Maged, M. S. 2023. Use of Trichoderma culture filtrates as a sustainable approach to mitigate early blight disease of tomato and their influence on plant biomarkers and antioxidants production. Front Plant Sci, 14. https://doi.org/10.3389/fpls.2023.1192818 PMid:37528983 PMCid:PMC10388550 DOI: https://doi.org/10.3389/fpls.2023.1192818

Mukherjee, P. K., Horwitz, B. A., Herrera-Estrella, A., Schmoll, M., and Kenerley, C. M. 2013. Trichoderma research in the genome era. Annu Rev Phytopathol, 51: 105-129. https://doi.org/10.1146/annurev-phyto-082712-102353 PMid:23915132 DOI: https://doi.org/10.1146/annurev-phyto-082712-102353

Murtaza, A., Shafique, S., Anjum, T., and Shafique, S. 2012. In vitro control of Alternaria citri using antifungal potentials of Trichoderma species. Afr J Biotechnol, 11(42): 9985-9992. https://doi.org/10.5897/AJB11.3172 DOI: https://doi.org/10.5897/AJB11.3172

Naragani, K., Mangamuri, U., Muvva, V., Poda, S., and Munaganti R. K. 2016. Antimicrobial potential of Streptomyces Cheonanensis VUK-A from mangrove origin. Int J Pharm Sci, 8(3): 53-57. https://doi.org/10.9734/JABB/2015/18025 DOI: https://doi.org/10.9734/JABB/2015/18025

Olivier, J. M., and Germain, R. 1983. Etude des antibiotiques volatils des Trichoderma. 17-34. Les antagonismes microbiens. Modes d’action et application à la lutte biologique contre les maladies des plantes. Bordeaux; May; Coll. de l’I.N.R.A., 18: 17-34.

Pournejati, R., and Karbalaei-Heidari, H. R. 2020. Optimization of fermentation conditions to enhance cytotoxic metabolites production by Bacillus velezensis strain RP137 from the Persian Gulf. Avicenna. J Med Biotechnol, 12(2): 116-123. PMID: 32431796; PMCID: PMC7229456.

Prabhakaran, N., Prameeladevi, T., Sathiyabama, M., and Kamil, D. 2015. Multiplex PCR for detection and differentiation of diverse Trichoderma species. Ann Microbiol, 65: 1591-1595. https://doi.org/10.1007/s13213-014-0998-5 DOI: https://doi.org/10.1007/s13213-014-0998-5

Priya, R., Balachandar, S., Murugesan, N. V., Prabhakaran, N., RadheshKrishnan, S., and Latha, K. 2022. Characterization and biocontrol potential of Trichoderma longibrachiatum TL-RD-01 against plant pathogens, Arch Phytopathol Pflanzenschutz, 55(18): 2111-2129. https://doi.org/10.1080/03235408.2022.2140469 DOI: https://doi.org/10.1080/03235408.2022.2140469

Sahar, L., and Zafari, D. 2018. Anti-proliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca Plants. Front Microbiol, 9. https://doi.org/10.3389/fmicb.2018.01484 PMid:30050508 PMCid:PMC6051055 DOI: https://doi.org/10.3389/fmicb.2018.01484

Salim, H. A., Simon, S., Lal, A. A., and Abdulrahman, A. L. 2017. Effectiveness of some Integrated Disease Management factors (IDM) on Fusarium wilt infected tomato. J Sci Agri, 1: 244-248. https://doi.org/10.25081/jsa.2017.v1.820 DOI: https://doi.org/10.25081/jsa.2017.v1.820

Sharma, S., and Sharma, S. 2021. Optimization of fermentation conditions for enhanced production of secondary metabolite from endophytic fungi of Berberis aristata. Nat Volatiles and Essent Oils, 8(6): 3353-3368.

Shih, I., Van, Y., and Chang, Y. 2002. Application of statistical experimental methods to optimize production of poly (γ-glutamic acid) by Bacillus licheniformis CCRC 12826. Enzyme Microb Technol, 31: 213-220. https://doi.org/10.1016/S0141-0229(02)00103-5 DOI: https://doi.org/10.1016/S0141-0229(02)00103-5

Shuwu, Z., Yantai, G., Jia, L., Jingjiang, Z., and Bingliang, X. 2020. Optimization of the fermentation media and parameters for the bio-control potential of Trichoderma longibrachiatum T6 against nematodes. Front Microbiol, 11: 574601. https://doi.org/10.3389/fmicb.2020.574601 PMid:33101249 PMCid:PMC7554348 DOI: https://doi.org/10.3389/fmicb.2020.574601

Singh, N., Rai, V., and Tripathi, C. 2012. Production and optimisation of oxytetracycline by a new isolate Streptomyces rimosus using response surface methodology. Med Chem Res, 21: 3140-3145. https://doi.org/10.1007/s00044-011-9845-4 DOI: https://doi.org/10.1007/s00044-011-9845-4

Soltani, J., and Mahdieh, H. 2014. Diverse and bioactive endophytic Aspergilli inhabit Cupressaceae plant family. Arch Microbiol, 196: 635-644. https://doi.org/10.1007/s00203-014-0997-8 PMid:24912659 DOI: https://doi.org/10.1007/s00203-014-0997-8

Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., Araniti, F., Sharma, A., 2020. Trichoderma: The “secrets” of a multitalented biocontrol agent. Plants (Basel), 9(6): Article 762. https://doi.org/10.3390/plants9060762 PMid:32570799 PMCid:PMC7355703 DOI: https://doi.org/10.3390/plants9060762

Spragg, A. M., Yan, L., and Jukes, K. 2011. Induction of secondary metabolites (U.S. Patent No. 2010/0144003 A1) U.S. Patent and Trademark Office. https://patentimages.storage.googleapis.com/a9/4a/46/3270ce1b7197c9/US20100144003A1.pdf

Sridharan, A. P, Binodh, A. K., Karthikeyan, G., and Uthandi, S. 2020. Comprehensive profiling of the vocs of Trichoderma longibrachiatum ef5 while interacting with sclerotium rolfsii and macrophomina phaseolina. Microbiol Res, 236: 126436. https://doi.org/10.1016/j.micres.2020.126436 PMid:32179388 DOI: https://doi.org/10.1016/j.micres.2020.126436

Stracquadanio, C., Quiles, J. M., Meca, G., and Cacciola, S. O. 2020. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium. J Fungi (Basel), 6(4): 263. https://doi.org/10.3390/jof6040263 PMid:33139651 PMCid:PMC7712451 DOI: https://doi.org/10.3390/jof6040263

Thongwai, N., and Kunopakarn, J. 2007. Growth inhibition of Ralstonia solanacearum PT1J by antagonistic bacteria isolated from soils in the Northern part of Thailand. Chiang Mai J Sci, 34: 345-54.

Utami, U., Nisa, C., Putri, A. Y., and Rahmawati, E. 2019. The potency of secondary metabolites endophytic fungi Trichoderma sp. as Biocontrol of Colletotrichum sp. and Fusarium oxysporum Causing Disease in Chili. International Conference on Biology and Applied Science (ICOBAS), AIP Conf Proc, 2120(1). https://doi.org/10.1063/1.5115758 DOI: https://doi.org/10.1063/1.5115758

Villa, F., Cappitelli, F., Cortesi, P., and Kunova, A. 2017. Fungal biofilms: Targets for the development of novel strategies in plant disease management. Front Microbiol, 8: 654. https://doi.org/10.3389/fmicb.2017.00654 PM Cid:PMC5390024 DOI: https://doi.org/10.3389/fmicb.2017.00654

Vincent, J. M., 1947. Distortion of fungal hyphae in the presence of certain inhibitors. Nature, 159: 850-850. https://doi.org/10.1038/159850b0 PMid:20343980 DOI: https://doi.org/10.1038/159850b0

Wang. Y., Fang, X., An, F., Wang, G., and Zhang, X. 2011. Improvement of antibiotic activity of Xenorhabdus bovienii by medium optimization using response surface methodology. Microb Cell Fact, 10: 98. https://doi.org/10.1186/1475-2859-10-98 PMid:22082189 PM Cid:PMC3227641 DOI: https://doi.org/10.1186/1475-2859-10-98