In vitro evaluation of microencapsulated Bacillus thuringiensis (Berliner) formulation against Helicoverpa armigera (Hubner)
DOI:
https://doi.org/10.18311/jbc/2024/35665Keywords:
Bacillus thuringiensis, bioassay, Helicoverpa armigera, microencapsulation, PCR, UV protectantsAbstract
An experiment was conducted to evaluate microencapsulated formulation of lyophilized spore crystal aggregate of native isolate BGC-1 and reference isolate HD-1 against second instar larvae of Helicoverpa armigera. The results revealed that the microcapsule diameter was ranged from 3.2 to 8.3 µm. Median lethal concentrations of the BGC-1 and Bt-HD1 were 0.66 g/l and 0.50 g/l respectively. UV protectants viz., melanin and para-amino benzoic acid were evaluated by exposing microencapsulated Bacillus thuringiensis to UV A light at 365nm. Among four microencapsulated formulations, BGC-1 with melanin recorded significantly highest mortality of 95.00 per cent at 0h exposure, as time increased, the mortality decreased and HD-1 was on par with BGC-1.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 K. AKSHAYA KUMAR, BASAVARAJ S. KALMATH, B. KISAN, A. PRABHURAJ, S. MALLIKARJUNA, M. BHEEMANNA (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-01-08
Published 2024-04-11
References
Brar, S. K., Verma, M., Tyagi, R. D., and Valéro, J. R. 2006. Recent advances in downstream processing and formulations of B. thuringiensis-based biopesticides. Process Biochem, 41(2): 323-342. https://doi.org/10.1016/j.procbio.2005.07.015
Devi, P. S. V., and Vineela, V. 2015. Suspension concentrates formulation of B. thuringiensis var. kurstaki for effective management of H. armigera on sunflower (Helianthus annuus). Biocontrol Sci Techn, 25(3): 329-336. https://doi.org/10.1080/09583157.2014.977846
Estruch, J. J., Warren, G. W., Mullins, M. A., Nye, G. J., Craig, J. A., and Koziel, M. G. 1996. Vip3A, a novel B. thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci, 93(11): 5389-5394. https://doi.org/10.1073/pnas.93.11.5389 PMid:8643585 PMCid:PMC39256
García-Gutiérrez, K., Poggy-Varaldo, H. M., Esparza-García, F., Ibarra-Rendón, J., and Barrera-Cortés, J. 2011. Small microcapsules of crystal proteins and spores of B. thuringiensis by an emulsification/internal gelation method. Bioprocess Biosyst. Eng, 34: 701-708. https://doi.org/10.1007/s00449-011-0519-x PMid:21344251
Gifani, A., Marzban, R., Safekordi, A., Ardjmand, M., and Dezianian, A., 2015. Ultraviolet protection of nucleo polyhedron virus through microencapsulation with different polymers. Biocontrol Sci Technol, 25(7): 814- 827. https://doi.org/10.1080/09583157.2015.1018814
Gill, S. S., Cowles, E. A., Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol, 37: 615-36. https://doi.org/10.1146/annurev.en.37.010192.003151 PMID: 1311541.
Gonsalves, J. K. M. C., Costa, A. M. B., de Sousa, D. P., Cavalcanti, S. C. H., and Nunes, R. S. 2009. Microencapsulação do óleo essencial de Citrus sinensis (L) Osbeck pelo método da coacervação simples. Sci Plena, 5(11).
Griego, V. M., and Spence, K. D. 1978. Inactivation of B. thuringiensis spores by ultraviolet and visible light. Appl Environ Microbiol. 35(5): 906-910. https://doi.org/10.1128/aem.35.5.906-910.1978 PMid:655707 PMCid:PMC242951
Hadapad, A. B., Hire, R. S., Vijayalakshmi, N., and Dongre, T. K. 2009. UV protectants for the biopesticide based on B. sphaericus Neide and their role in protecting the binary toxins from UV radiation. J Invertebr Pathol, 100(3): 147-152. https://doi.org/10.1016/j.jip.2008.12.003 PMid:19167401
Huang, K. S., Liu, M. K., Wu, C. H., Yen, Y. T., and Lin, Y. C. 2007. Calcium alginate microcapsule generation on a microfluidic system fabricated using the optical disk process. J Micromech Microeng, 17(8): Article 1428. https://doi.org/10.1088/0960-1317/17/8/003
Kalantari, M., Marzban, R., Imani, S., and Askari, H. 2014. Effects of B. thuringiensis isolates and single nuclear polyhedrosis virus in combination and alone on H. armigera. Arch Phytopathol Pflanzenschutz, 47(1): 42-50. https://doi.org/10.1080/03235408.2013.802460
Khorramvatan, S., Marzban, R., Ardjmand, M., Seifkordi, A. and Askary, H. 2017. Optimizing
microencapsulated formulation stability of Bacillus thuringiensis subsp. kurstaki (Bt-KD2) against ultraviolet condition using response surface methodology. Archives of Phytopathology and Plant Protection, 50(5-6): 275- 285. https://doi.org/10.1080/03235408.2017.1302147
Lakshminarayana, M., and Sujatha, M. 2005. Toxicity of B. thuringiensis var. kurstaki strains and purified crystal proteins against Spodoptera litura (Fabr.) on castor, Ricinus communis L. J. Oilseeds Res, 22(2): 433.
Liu, Y. T., Sui, M. J., Ji, D. D., Wu, I. H., Chou, C. C., and Chen, C. C. 1993. Protection from ultraviolet irradiation by melanin of mosquitocidal activity of B. thuringiensis var. israelensis. J Invertebr Pathol, 62(2): 131-136. https://doi.org/10.1006/jipa.1993.1088 PMid:8228318
Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., and Barak, Z. E. 2001. Comparative sensitivity to UV-B radiation of two B. thuringiensis subspecies and other Bacillus sp. Curr Microbiol, 43: 140-143. https://doi.org/10.1007/s002840010276 PMid:11391479
Nosanchuk, J. D., and Casadevall, A. 2003. The contribution of melanin to microbial pathogenesis. Cell Microbiol, 5(4): 203-223. https://doi.org/10.1046/j.1462- 5814.2003.00268.x PMid:12675679
Poncelet, D., Lencki, R., Beaulieu, C., Halle, J. P., Neufeld, R. J., and Fournier, A. 1992. Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol, 38: 39-45. https://doi. org/10.1007/BF00169416 PMid:1369009
Rodrigues, A. P., Hirsch, D., Figueiredo, H. C. P., Logato, P. V. R., and Moraes, A. M. 2006. Production and characterization of alginate microparticles incorporating Aeromonas hydrophila designed for fish oral vaccination. Process Biochem, 41(3): 638-643. https://doi.org/10.1016/j.procbio.2005.08.010
Ruan, L., Yu, Z., Fang, B., He, W., Wang, Y., and Shen, P. 2004. Melanin pigment formation and increased UV resistance in B. thuringiensis following high temperature induction. Syst Appl Microbiol, 27(3): 286-289. https://doi.org/10.1078/0723-2020-00265 PMid:15214633
Savitri, G., and Mohan, P. M. 2003. Pathogenicity of the bacterium B. thuringiensis coagulans in silkworm, Bombyx mori (L). Indian J Sericul, 42(1): 4-8.
Sareen, V., Rathore, Y. S., and Bhattacharya, A. K. 1983. Response of Spodoptera litura (Fab.) to various concentrations of B. thuringiensis var. thuringiensis. Sci Cult.
Sopeña, F., Maqueda, C., and Morillo, E. 2009. Controlled release formulations of herbicides based on micro- encapsulation. Ciencia e investigación agraria, 36(1): 27-42. https://doi.org/10.4067/S0718-16202009000100002
Wan, X., Liu, H. M., Liao, Y., Su, Y., Geng, J., Yang, M. Y., Chen, X. D., and Shen, P. 2007. Isolation of a novel strain of Aeromonas media producing high levels of DOPA‐melanin and assessment of the photoprotective role of the melanin in bioinsecticide applications. J Appl Microbiol, 103(6): 2533-2541. https://doi.org/10.1111/j.1365-2672.2007.03502.x PMid:18045437
Zhang, L., Zhang, X., Zhang, Y., Wu, S., Gelbič, I., Xu, L., and Guan, X. 2016. A new formulation of B. thuringiensis: UV protection and sustained release mosquito larvae studies. Sci Rep, 6(1): Article 39425. https://doi.org/10.1038/srep39425 PMid:28004743 PMCid:PMC5177894