Endophytic fungi from Dichrocephala integrifolia: Diversity, antifungal properties, enzymatic activities, and plant growth promotion
DOI:
https://doi.org/10.18311/jbc/2024/36030Keywords:
Antagonism, biocontrol, Dichrocephala integrifolia, endophytic fungi, phytopathogensAbstract
Dichrocephala integrifolia is a wild medicinal plant utilised in traditional healing and Ayurveda to cope up with several health issues by various groups of people around the world. Medicinal plants are associated with diverse fungal endophytes with potential bioactive properties. In this investigation, 26 fungal endophytes were isolated from D. integrifolia and three sterile forms using the Petri plate culture method. The endophytic isolation rate was highest for inflorescence (35.97%) and lowest for stem (15.61%). The highest colonization frequency was shown by F. solani (8.37%) and the lowest by Sterile morphotype 3 (1.36%). Out of the four plant parts, inflorescence was found to be highly infected, displaying an infection rate of 93.43% and the least infection occurred in the stem with 45%. The maximum number of isolated endophytic fungi belongs to the class Sordariomycetes, with a relative occurrence (%) of 71.72%. The Simpson’s diversity index reveals that the leaf endophytes were more diverse (0.94). Qualitative antifungal activity of the sporulating isolates against Curvularia lunata has shown that the maximum number of endophytes possessed Class 3 antagonism. Four isolates were selected based on screening of their antagonistic activity and their antifungal inhibition was calculated against nine fungal phytopathogens. Maximum inhibition (100%) was shown by Trichoderma sp. 2 (S2B2) against Alternaria alternata, A. brassicicola, Colletotrichum capsici, C. lunata, and Ustilaginoidea virens and least inhibition by Gliocladium sp. 1 (19.78%) against C. lunata. The four isolates were found to produce protease, lipase, amylase and cellulase enzymes. The isolates produced ammonia and hydrogen cyanide, but none of the isolates could solubilize phosphate. Potent biocontrol agents are much needed to replace synthetic chemicals and restore soil microflora.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kistu Singh Nongthombam, Shyamkesho Singh Mutum, Radha Raman Pandey (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-08-27
Published 2024-10-08
References
Alves, D. R., Morais, S. M. D., Tomiotto-Pellissier, F., Vasconcelos, F. R., Freire, F. D. C. O., Silva, I. N. G. D., Cataneo, A. H. D., Miranda-Sapla, M.M., Pinto, G. A. S., Conchon-Costa, I., and Noronha, A.D.A.A., 2018. Leishmanicidal and fungicidal activity of lipases obtained from endophytic fungi extracts. PloS one, 13(6): p.e0196796. https://doi.org/10.1371/journal.pone.0196796
Attia, M. S., Salem, M. S., and Abdelaziz, A. M., 2022. Endophytic fungi Aspergillus spp. reduce fusarial wilt disease severity, enhance growth, metabolism and stimulate the plant defense system in pepper plants. Biomass Conversion and Biorefinery (pp. 1-11). https:// doi.org/10.1007/s13399-022-03607-6
Barnett, H. L., and Hunter, B. B. 1998. Illustrated genera of imperfect Fungi. 4th edition. APS Press, St Paul, Minnesota.
Bell, D. K., Wells, H. D., and Markham, C. R., 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathol, 72(4): 379-382. https://doi.org/10.1094/Phyto-72-379 Bernardi-
Wenzel, J., García, A., Prioli, A. J., and Pamphile, J. A. 2010. Evaluation of foliar fungal endophyte diversity and colonization of medicinal plant Luehea divaricata (Martius et Zuccarini). Biol Res, 43(4): 375-384. http://dx.doi.org/10.4067/S0716-97602010000400001
Chen, Z., Jin, Y., Yao, X., Chen, T., Wei, X., Li, C., White, J. F., and Nan, Z. 2020. Fungal endophyte improves survival of Lolium perenne in low fertility soils by increasing root growth, metabolic activity and absorption of nutrients. Plant Soil, 452: 185-206.
De Silva, N. I., Brooks, S., Lumyong, S., and Hyde, K. D. 2019. Use of endophytes as biocontrol agents. Fungal Biol Rev, 33(2): 133-148. https://doi.org/10.1016/j.fbr.2018.10.001
Devi, R., Kaur, T., Kour, D., Rana, K. L., Yadav, A., and Yadav, A. N. 2020. Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst, 5(1): 21-47. https://doi.org/10.21608/MB.2020.32802.1016
Duan, X., Xu, F., Qin, D., Gao, T., Shen, W., Zuo, S., Yu, B., Xu, J., Peng, Y., and Dong, J. 2019. Diversity and bioactivities of fungal endophytes from Distylium chinense, a rare waterlogging tolerant plant endemic to the Three Gorges Reservoir. BMC Microbiol, 19: 1-14. https://doi.org/10.1186/s12866-019-1634-0
Falcon, W. P., Naylor, R. L., and Shankar, N. D. 2022. Rethinking global food demand for 2050. Popul Dev Rev, 48(4): 921-957. https://doi.org/10.1111/padr.12508
Fang, K., Miao, Y. F., Chen, L., Zhou, J., Yang, Z. P., Dong, X. F., and Zhang, H. B. 2019. Tissue-specific and geographical variation in endophytic fungi of Ageratina adenophora and fungal associations with the environment. Front Microbiol, 10: 2919. https://doi.org/10.3389/fmicb.2019.02919
Fontana, D. C., de Paula, S., Torres, A. G., de Souza, V. H. M., Pascholati, S. F., Schmidt, D., and Neto, D. D. 2021. Endophytic fungi: Biological control and induced resistance to phytopathogens and abiotic stresses. Pathog, 10(5): 570. https://doi.org/10.3390/pathogens10050570
Ghosh, S. K., Chaudhary, M., and Manjunatha, N. 2020. Endophytes: A potential bio-agent for the plant protection. Innovative Pest Management Approaches for the 21st Century: Harnessing Automated Unmanned Technologies (pp. 273-297). https://doi.org/10.1007/978-981-15-0794-6_14
Gnat, S., Łagowski, D., Nowakiewicz, A., and Dyląg, M. 2021. A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. J Appl Microbiol, 131(5): 2095-2113. https://doi.org/10.1111/jam.15032
Grigoletto, D. F., Trivella, D. B., Tempone, A. G., Rodrigues, A., Correia, A. M. L., and Lira, S. P. 2020. Antifungal compounds with anticancer potential from Trichoderma sp. P8BDA1F1, an endophytic fungus from Begonia venosa. Braz J Microbiol, 51: 989-997. https://doi.org/10.1007/s42770-020-00270-9
Hajieghrari, B., Torabi-Giglou, M., Mohammadi, M. R., and Davari, M. 2008. Biological potantial of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr J Biotechnol, 7(8).
Hallmann, J., Berg, G., and Schulz, B. 2006. Isolation procedures for endophytic microorganisms. Microbial root endophytes (pp. 299-319). Berlin, Heidelberg: Springer Berlin Heidelberg.
Hassan, S. E. D. 2017. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res, 8(6): 687-695. https://doi.org/10.1016/j.jare.2017.09.001
Hateet, R. R., Muhsin, T. M., and Humadi, K. J. 2014. Antibacterial activities secondary metabolites from endophytic fungus Fusarium solani. J Basrah Res (Sci), 40(1A).
Ebrahim, W., Özkaya, F. C., and Ebada, S. S. 2020. Antifungal metabolites from endophytic fungus Fusarium verticillioides strain WF18. S Afr J Bot, 133: 40-44. https://doi.org/10.1016/j.sajb.2020.06.029
Jena, S. K., and Tayung, K. 2013. Endophytic fungal communities associated with two ethno-medicinal plants of Similipal Biosphere Reserve, India and their antimicrobial prospective. J Appl Pharm Sci, 3(4): S7-S12. https://doi.org/10.7324/JAPS.2013.34.S2
Joshi, B., Panda, S. K., Jouneghani, R. S., Liu, M., Parajuli, N., Leyssen, P., Neyts, J., and Luyten, W. 2020. Antibacterial, antifungal, antiviral, and anthelmintic activities of medicinal plants of Nepal selected based on ethnobotanical evidence. J Evid Based Complementary Altern Med, 2020. https://doi.org/10.1155/2020/1043471
Khan, A. R., Ullah, I., Waqas, M., Shahzad, R., Hong, S. J., Park, G. S., Jung, B. K., Lee, I. J., and Shin, J. H. 2015. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol, 31: 1461-1466. https://doi.org/10.1007/s11274-015-1888-0
Kim, J. J., Goettel, M. S., and Gillespie, D. R. 2010. Evaluation of Lecanicillium longisporum, Vertalec® against the cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea in a greenhouse environment. Crop Prot, 29(6): 540-544. https://doi.org/10.1016/j.cropro.2009.12.011
Kumar, D. S. S., and Hyde, K. D. 2004. Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers: 69-90.
Kyekyeku, J. O., Kusari, S., Adosraku, R. K., Bullach, A., Golz, C., Strohmann, C., and Spiteller, M. 2017. Antibacterial secondary metabolites from an endophytic fungus, Fusarium solani JK10. Fitoterapia, 119: 108114. https://doi.org/10.1016/j.fitote.2017.04.007
Latz, M. A., Jensen, B., Collinge, D. B., and Jørgensen, H. J. 2018. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol. Divers, 11(5-6): 555-567. https://doi.org/10.1080/17550874.2018.1534146
Ma, Y., Oliveira, R. S., Freitas, H., and Zhang, C. 2016. Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Front Plant Sci, 7: 918. https://doi.org/10.3389/fpls.2016.00918
Mahfooz, M., Dwedi, S., Bhatt, A., Raghuvanshi, S., Bhatt, M., and Agrawal, P. K. 2017. Evaluation of antifungal and enzymatic potential of endophytic fungi isolated from Cupressus torulosa D. Don. Int J Curr Microbiol App Sci, 6(7): 4084-4100. https://doi.org/10.20546/ijcmas.2017.607.424
Mondelaers, K., Aertsens, J., and Van Huylenbroeck, G. 2009. A meta‐analysis of the differences in environmental impacts between organic and conventional farming. Br Food J, 111(10): 1098-1119. http://dx.doi.org/10.1108/00070700910992925
Mosaddeghi, M. R., Hosseini, F., Hajabbasi, M. A., Sabzalian, M. R., and Sepehri, M. 2021. Epichloë spp. and Serendipita indica endophytic fungi: Functions in plant-soil relations. Adv Agron, 165: 59-113. https://doi.org/10.1016/bs.agron.2020.09.001
Ownley, B. H., Griffin, M. R., Klingeman, W. E., Gwinn, K. D., Moulton, J. K., and Pereira, R. M. 2008. Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol, 98(3): 267-270. https://doi.org/10.1016/j.jip.2008.01.010
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., and Kamili, A. N. 2021. Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs (pp.1-20). https://doi.org/10.1007/978-3-030-61010-4_1
Passari, A. K., Mishra, V. K., Leo, V. V., Gupta, V. K., and Singh, B. P. 2016. Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol. Res, 193: 57-73. https://doi.org/10.1016/j.micres.2016.09.006
Pereira, L. S. 2017. Water, agriculture and food: challenges and issues. Water Resour Manag, 31(10): 2985-2999. https://doi.org/10.1007/s11269-017-1664-z
Petrini, O. 1991. Fungal endophytes of tree leaves. Microbial ecology of leaves (pp. 179-197). New York, NY: Springer New York. https://doi.org/10.1007/978-14612-3168-4_9
Rajput, K., Chanyal, S., and Agrawal, P. K., 2016. Optimization of protease production by endophytic fungus, Alternaria alternata isolated from gymnosperm tree-Cupressus torulosa D Don. World J Pharm Pharmaceut Sci, 5: 1034-1054.
Rana, K. L., Kour, D., Sheikh, I., Dhiman, A., Yadav, N., Yadav, A. N., Rastegari, A. A., Singh, K., and Saxena, A. K. 2019. Endophytic fungi: Biodiversity, ecological significance, and potential industrial applications.
Recent advancement in white biotechnology through fungi: volume 1: diversity and enzymes perspectives (pp.1-62). https://doi.org/10.1007/978-3-030-10480-1_1
Rao, A., Ramakrishna, N., Arunachalam, S., and Sathiavelu, M. 2019. Isolation, screening and optimization of laccase-producing endophytic fungi from Euphorbia milii. Arab J Sci Eng, 44: 51-64. https://doi.org/10.1007/ s13369-018-3431-8
Ripa, F. A., Cao, W. D., Tong, S., and Sun, J. G. 2019. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. BioMed Research International, 2019. https://doi.org/10.1155/2019/6105865
Rodriguez, R. J., White Jr, J. F., Arnold, A. E., and Redman, A. R. A. 2009. Fungal endophytes: diversity and functional roles. New Phytol, 182(2): 314-330. https:// doi.org/10.1111/j.1469-8137.2009.02773.x
Sanchez, S., and Demain, A. L. 2017. Bioactive products from fungi. Food bioactives: extraction and biotechnology applications (pp. 59-87). https://doi.org/10.1007/978-3319-51639-4_3
Sánchez-Fernández, R. E., Sánchez-Fuentes, R., RangelSánchez, H., Hernández-Ortega, S., López-Cortés, J. G., and Macías-Rubalcava, M. L. 2020. Antifungal and antioomycete activities and modes of action of isobenzofuranones isolated from the endophytic fungus Hypoxylon anthochroum strain Gseg1. Pesticide Biochem Physiol, 169: 104670. https://doi.org/10.1016/j.pestbp.2020.104670
Segaran, G., and Sathiavelu, M. 2019. Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. Biocatal Agric Biotechnol, 21: 101284. https://doi.org/10.1016/j.bcab.2019.101284
Sharma, C. M., Mishra, A. K., Tiwari, O. P., Krishan, R., and Rana, Y. S. 2018. Regeneration patterns of tree species along an elevational gradient in the Garhwal Himalaya. Mt Res Dev, 38(3): 211-219. https://doi.org/10.1659/ MRD-JOURNAL-D-15-00076.1
Singh, R., Kumar, M., Mittal, A., and Mehta, P. K. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6: 1-15. https://doi.org/10.1007/s13205-0160485-8
Srivastava, P., Balhara, M., and Giri, B. 2020. Soil health in India: past history and future perspective. Soil health (pp.1-19). https://doi.org/10.1007/978-3-030-44364-1_1
Suman, A., Yadav, A. N., and Verma, P. 2016. Endophytic microbes in crops: Diversity and beneficial impact for sustainable agriculture. Microbial inoculants in sustainable agricultural productivity: Vol. 1: research perspectives (pp.117-143). https://doi.org/10.1007/978-81-322-2647-5_7
Sunitha, V. H., Ramesha, A., Savitha, J., and Srinivas, C. 2012. Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol, 43(3): 1213. https://doi.org/10.1590/S1517-838220120003000049
Suryanarayanan, T. S., Venkatesan, G., and Murali, T. 2003. Endophytic fungal communities in leaves of tropical forest trees: Diversity and distribution patterns. Curr Sci, 85(4): 489-493. https://www.jstor.org/stable/24108544
Tan, R. X., and Zou, W. X. 2001. Endophytes: A rich source of functional metabolites. Nat Prod Rep, 18(4): 448459. https://doi.org/10.1039/B100918O
Tang, M. J., Lu, F., Yang, Y., Sun, K., Zhu, Q., Xu, F. J., Zhang, W., and Dai, C. C. 2022. Benefits of endophytic fungus Phomopsis liquidambaris inoculation for improving mineral nutrition, quality, and yield of rice grains under low nitrogen and phosphorus condition. J Plant Growth Regul, 41(6): 2499-2513. https://doi.org/10.1007/s00344-021-10462-8
Tayung, K., Barik, B. P., Jha, D. K., and Deka, D. C. 2011. Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere, 2(3): 203-213.
Uzma, F., Konappa, N. M., and Chowdappa, S. 2016. Diversity and extracellular enzyme activities of fungal endophytes isolated from medicinal plants of Western Ghats, Karnataka. Egypt J Basic Appl Sci, 3(4): 335-342. https://doi.org/10.1016/j.ejbas.2016.08.007
Verma, V. C., Gond, S. K., Kumar, A., Kharwar, R. N., and Strobel, G. 2007. The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microb Ecol, 54: 119-125. https://doi.org/10.1007/s00248-006-9179-9
Vishwakarma, K., Kumar, N., Shandilya, C., and Varma, A. 2021. Unravelling the role of endophytes in micronutrient uptake and enhanced crop productivity. Symbiotic soil microorganisms: Biology and applications (pp. 63-85). https://doi.org/10.1007/978-3-030-51916-2_4
Wabo, P. J., Payne, V. K., Mbogning, T. G., Komtangi, M. C., Yondo, J., Ngangout, A. M., Mbida, M., and Bilong, B. C. 2013. In vitro anthelminthic efficacy of Dichrocephala integrifolia (Asteraceae) extracts on the gastro-intestinal nematode parasite of mice: Heligmosomoides bakeri (Nematoda, Heligmosomatidae). Asian Pac J Trop Biomed, 3(2): 100-104. https://doi.org/10.1016/S2221-1691(13)60032-5
Watanabe, T. 2002. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species. CRC Press. https://doi.org/10.1201/9781420040821
Wei, F., Zhang, Y., Shi, Y., Feng, H., Zhao, L., Feng, Z., and Zhu, H. 2019. Evaluation of the biocontrol potential of endophytic fungus Fusarium solani CEF559 against Verticillium dahliae in cotton plant. Biomed Res. Int, 2019. https://doi.org/10.1155/2019/3187943
Yang, Y., Chen, Y., Cai, J., Liu, X., and Huang, G. 2021. Antifungal activity of volatile compounds generated by endophytic fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense. PloS one, 16(12): e0260747. https://doi.org/10.1371/journal.pone.0260747
Yu, J., Wu, Y., He, Z., Li, M., Zhu, K., and Gao, B. 2018. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera. Mycobiol, 46(2): 85-91. https://doi.org/10.1080/12298093.2018.1454008
Zeweld, W., Van Huylenbroeck, G., Tesfay, G., and Speelman, S. 2017. Smallholder farmers’ behavioural intentions towards sustainable agricultural practices. J Environ Manage, 187: 71-81. https://doi.org/10.1016/j.jenvman.2016.11.014
Zhao, J., Zhou, L., Wang, J., Shan, T., Zhong, L., Liu, X., and Gao, X. 2010. Endophytic fungi for producing bioactive compounds originally from their host plants. Curr Res, Technol Educ Trop Appl Microbiol Microbial Biotechnol, 1: 567-576.