Efficacy of Beauveria bassiana and Trichoderma viride against Bemisia tabaci (Hemiptera: Aleyrodidae) on tomato plants

Jump To References Section

Authors

  • College of Agricultural Engineering Science, Plant Protection Department, University of Duhok ,IQ
  • Department of Plant Protection, College of Agriculture, University of Basrah ,IQ
  • Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Sidi Bouzid ,TN
  • Regional Centre of Agricultural Research of Sidi Bouzid, CRRA, Sidi Bouzid ,TN

DOI:

https://doi.org/10.18311/jbc/2024/36616

Keywords:

Bemisia tabaci, Beauveria bassiana, Trichoderma viride, Solanum lycopersicum

Abstract

Bemisia tabaci poses a major threat to tomato crops, causing significant yield losses and economic damage to farmers. This study investigates the conidia filtration method as a potential management strategy for B. tabaci under greenhouse conditions. Evaluating the efficacy of this approach in controlling the whitefly population while potentially promoting plant growth is crucial for developing sustainable solutions for tomato production. Both Trichoderma viride and Beauveria bassiana fungi effectively killed adult whiteflies in this study, significantly exceeding the untreated control. Beauveria bassiana showed slightly higher mortality rates at all time points, achieving a maximum of 69.47% compared to T. viride’s 62.22% after 14 days. Trichoderma viride and Beauveria bassiana significantly stimulated plant growth compared to the untreated control. However, T. viride emerged as the superior growth promoter across all assessed parameters: plant height, fresh weight, and dry weight. It achieved the tallest plants (27.31 cm), exceeding both the control and B. bassiana. Similarly, its impact on fresh and dry weight surpassed both the control and B. bassiana, reaching respective values of 14.21 and 2.83 g. These findings suggest that T. viride holds greater potential as a plant growth promoter under the examined conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-06-28

How to Cite

GHAZI MOHAMMED, V., MATROOD, A. A. A., RHOUMA, A., & HAJJI-HEDFI, L. (2024). Efficacy of <i>Beauveria bassiana</i> and </i>Trichoderma viride</i> against <i>Bemisia tabaci</i> (Hemiptera: Aleyrodidae) on tomato plants. Journal of Biological Control, 38(2), 179–185. https://doi.org/10.18311/jbc/2024/36616

Issue

Section

Research Articles
Received 2024-02-16
Accepted 2024-04-10
Published 2024-06-28

 

References

Abdel-Baky, N. F., El-Fadaly, H. A., El-Nagar, M. E., Arafat, N. S., and Abd-Allah, R. R. H. 2005. Virulence and enzymatic activities of some entomopathogenic fungi against whiteflies and aphids. J Agric Sci, 30: 1153- 1167. https://doi.org/10.21608/JPPP.2005.238696 DOI: https://doi.org/10.21608/jppp.2005.238696

Ali, S., Huang Z., and Ren, S. X. 2009. Production and extraction of extracellular lipase from the entomopathogenic fungus Isaria fumosoroseus (Cordycipitaceae: Hypocreales). Biocontrol Sci Technol, 19: 81-89. DOI: https://doi.org/10.1080/09583150802588524

Al-Juburi, I. J., and Awad, H. I. 1999. Bio-evaluation and efficacy testing of some pesticides against date palm spider mite Oligonychus afrasiaticus (Tetranychidae: Acari). Iraqi J Agric Sci, 4: 41-50.

Anwar, W., Javed, M. A., Shahid, A. A., Nawaz, K., Akhter, A., UrRehman, M. Z., Hameed, U., Iftikhar, S., and Haider, M. S. 2019. Chitinase genes from Metarhizium anisopliae for the control of whitefly in cotton. R Soc Open Sci, 6: 1-12. https://doi.org/10.1098/rsos.190412 DOI: https://doi.org/10.1098/rsos.190412

Banerjee, S., Pal, S., Mukherjee, S., Podder, D., Mukherjee, A., Nandi, A., Debnath, P., Sur, P. K., and Ghosh, S. K. 2016. Cellular abnormalities induced by Trichoderma spp. during in vitro interaction and control of white muscardine (Beauveria bassiana) and green muscardine (Metarhizium anisopliae) disease of silkworm Bombyx mori. J Biopestic, 9: 104-112. https://doi.org/10.57182/ jbiopestic.9.2.104-112 DOI: https://doi.org/10.57182/jbiopestic.9.2.104-112

Batool, R., Umer, M. J., Wang, Y., He, K., Zhang, T., Bai, S., Zhi, Y., Chen, J., and Wang, Z. 2020. Synergistic effect of Beauveria bassiana and Trichoderma asperellum to induce maize (Zea mays L.) defense against the Asian corn borer, Ostrinia furnacalis (Lepidoptera, Crambidae) and larval immune response. Int J Mol Sci, 21: Article 8215. https://doi.org/10.3390/ijms21218215 DOI: https://doi.org/10.3390/ijms21218215

Bidochka, M. J., and Khachatourians, G. G. 1991. The implication of metabolic acids produced by Beauveria bassiana in pathogenesis of the migratory grasshopper, Melanoplus sanguinipes. J Invertebr Pathol, 58: 106- 117. https://doi.org/10.1016/0022-2011(91)90168-P DOI: https://doi.org/10.1016/0022-2011(91)90168-P

Boldo, J. T., Junges, A., Do Amaral, K. B., Staats, C. C., Vainstein, M. H., and Schrank, A. 2009. Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Curr Genet, 55: 551-560. https://doi.org/10.1007/s00294-009-0267-5 DOI: https://doi.org/10.1007/s00294-009-0267-5

Demain, A. L. 1999. Pharmaceutically active secondary metabolites of microorganisms. Appl Microbiol Biotechnol, 52: 455-463. https://doi.org/10.1007/s002530051546 DOI: https://doi.org/10.1007/s002530051546

Dhawan M., and Joshi N. 2017. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae Linn. Braz J Microbiol, 48: 522-529. https://doi.org/10.1016/j.bjm.2016.08.004 DOI: https://doi.org/10.1016/j.bjm.2016.08.004

Dong, T., Zhang, B., Jiang, Y., and Hu, Q. 2016. Isolation and classification of fungal whitefly entomopathogens from soils of Qinghai-Tibet Plateau and Gansu Corridor in China. Plos One, 11: 1-12. https://doi.org/10.1371/journal.pone.0156087 DOI: https://doi.org/10.1371/journal.pone.0156087

Duriya, C., Supattra, K., Nemat, O., Keyhani, K., Boonyapakron, H., Thoetkiattikul, A., Kusol Pootanakit, B., and Lily- Eurwilaichitr, A. 2013. Identification of catalase as an early upregulated gene in Beauveria bassiana and its role in entomopathogenic fungal virulence. Biol Control, 67: 85-93. https://doi.org/10.1016/j.biocontrol.2013.08.004 DOI: https://doi.org/10.1016/j.biocontrol.2013.08.004

Faria, M., and Wraight, S. P. 2001. Biological control of Bemisia tabaci with fungi. Crop Prot, 20: 767-778. https://doi.org/10.1016/S0261-2194(01)00110-7 DOI: https://doi.org/10.1016/S0261-2194(01)00110-7

Fernandes, E. G., Valério, H. M., Feltrin, T., and Van Der Sand, S. T. 2012.Variability in the production of extracellular enzymes by entomopathogenic fungi grown on different substrates. Braz J Microbiol, 43: 827-833. https://doi. org/10.1590/S1517-83822012000200049 DOI: https://doi.org/10.1590/S1517-83822012000200049

Gabarty, A., Salem, H., Fouda, M., Abas, A.,and Ibrahim, A. 2014. Pathogencity induced by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in Agrotis ipsilon (Hufn.). J Radiat Res Appl Sci, 7: 95-100. https://doi.org/10.1016/j.jrras.2013.12.004 DOI: https://doi.org/10.1016/j.jrras.2013.12.004

Gebremariam, A., Chekol, Y., and Assefa, F. 2022. Extracellular enzyme activity of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae and their pathogenicity potential as a bio-control agent against whitefly pests, Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). BMC Res Notes, 15: Article 117. https://doi.org/10.1186/s13104-022-06004-4 DOI: https://doi.org/10.1186/s13104-022-06004-4

Haj Hasan, A., Ahmad, M., and El-Moghrabi, S. 2015. Laboratory evaluation of some local entomopathogenic fungi isolates against cotton whitefly, Bemisia tabaci (Genn.). Arab J Plant Prot, 33: 208-215.

Hajek, A. E. 1997. Ecology of terrestrial fungal entomopathogens. Adv Microb Ecol, 15: 193-249. DOI: https://doi.org/10.1007/978-1-4757-9074-0_5

Hajji-Hedfi, L., Rhouma, A., Hajlaoui, H., Hajlaoui, F., and Rebouh, N. Y. 2023. Understanding the influence of applying two culture filtrates to control gray mold disease (Botrytis cinerea) in tomato. Agronomy, 13: Article 1774. https://doi.org/10.3390/agronomy13071774 DOI: https://doi.org/10.3390/agronomy13071774

Hegedus, D. D., and Khachatourians, G. G. 1996. Identification and differentiation of the entomopathogenic fungus Beauveria bassiana using polymerase chain reaction and singlestrand conformation polymorphism analysis. J Invertebr Pathol, 67: 289-299. https://doi.org/10.1006/jipa.1996.0044 DOI: https://doi.org/10.1006/jipa.1996.0044

Horowitz, A. R., Antignus, Y., and Gerling, D. 2011. Management of Bemisia tabaci whiteflies. In: Thompson WMO (ed). Handbook of the whitefly Bemisia tabaci (Homoptera: Aleyrodidae) interaction with Geminivirus-infected host plants (pp. 293–322). Springer Dordrecht, Holland. DOI: https://doi.org/10.1007/978-94-007-1524-0_11

Huang, Z., Shaukat, A., Shun-Xiang, R., and Jian-Hui, W. 2010. Effect of Isaria fumosoroseus on mortality and fecundity of Bemisia tabaci and Plutella xylostella. Insect Sci, 17: 140-148. https://doi.org/10.1111/j.1744-7917.2009.01299.x DOI: https://doi.org/10.1111/j.1744-7917.2009.01299.x

James, R. R., Buckner, J. S., and Freeman, T. P. 2003. Cuticular lipids and silver leaf whitefly stage affect conidial germination of Beauveria bassiana and Paecilomyces fumosoroseus. J Invertebr Pathol, 84: 67-74. https://doi. org/10.1016/j.jip.2003.08.006 DOI: https://doi.org/10.1016/j.jip.2003.08.006

Kareem, A. A., Logan, S. A., Port, G., and Wolff, K. 2020. Bemisia tabaci in Iraq: Population structure, endosymbiont diversity and putative species. J Appl Entomol, 144: 297-307. https://doi.org/10.1111/ jen.12736 DOI: https://doi.org/10.1111/jen.12736

Kumar, M., Chandran, D., Tomar, M, Bhuyan, D. J., Grasso, S., Sá, A. G. A., Carciofi, B. A. M., Radha-Dhumal, S., Singh, S., et al. 2022. Valorization potential of tomato (Solanum lycopersicum L.) seed: Nutraceutical quality, food properties, safety aspects, and application as a health-promoting ingredient in foods. Hortic, 8: 265. https://doi.org/10.3390/horticulturae8030265 DOI: https://doi.org/10.3390/horticulturae8030265

Li, Y. Y., Tang, J., Fu, K. H., Gao, S. G., Wu, Q., and Chen, J. 2012. Construction of transgenic Trichoderma koningi with chit42 of Metarhizium anisopliae and analysis of its activity against the Asian corn borer. J Environ Sci Health Part B, 47: 622-630. https://doi.org/10.1080/036 01234.2012.668455 DOI: https://doi.org/10.1080/03601234.2012.668455

Makhadmeh, I., Albalasmeh, A. A., Ali, M., Thabet, S. G., Darabseh, W. A., Jaradat, S., and Alqudah, A. M. 2022. Molecular characterization of tomato (Solanum lycopersicum L.) accessions under drought stress. Hortic, 8: Article 600. https://doi.org/10.3390/horticulturae8070600 DOI: https://doi.org/10.3390/horticulturae8070600

Matrood, A. A. A., Rhouma, A., Hajji-Hedfi, L., and Khrieba, M. I. 2023. Fungal diversity associated with Bemisia tabaci (Hemiptera: Aleyrodidae) on cucumber and comparative effectiveness of bioassay methods in identifying the most virulent entomopathogenic fungi. Sydowia, 75: 269-282. https://doi.org/10.12905/0380.sydowia75-2023-0269

Mondal, S., Baksi, S., Koris, A., and Vatai, G. 2016. Journey of enzymes in entomopathogenic fungi. Pac Sci Rev, 18: 85-99. https://doi.org/10.1016/j.psra.2016.10.001 DOI: https://doi.org/10.1016/j.psra.2016.10.001

Nazir, T., Basit, A., Hanan, A., Majeed, M.,and Qiu, D. 2019. In vitro pathogenicity of some entomopathogenic fungal strains against green peach aphid Myzus persicae (Homoptera: Aphididae). Agronomy, 9: Article 7. https://doi.org/10.3390/agronomy9010007 DOI: https://doi.org/10.3390/agronomy9010007

Pan, F., Li, X., Zhong, D., Lu, X., Pan, C., Hu, J., Su, W., Zhang, H., Zhang, C., Shi, L., et al. 2023. Eceriferum genes in tomato (Solanum lycopersicum): Genomewide identification and expression analysis reveal their potential functions during domestication. Hortic, 9: Article 748. https://doi.org/10.3390/horticulturae9070748 DOI: https://doi.org/10.3390/horticulturae9070748

Rhouma, A., Mehaoua, M.S., Mougou, I., Rhouma, H., Shah, K.K., and Bedjaoui, H. 2023. Combining melon varieties with chemical fungicides for integrated powdery mildew control in Tunisia. Eur J Plant Pathol, 165: 189-201. https://doi.org/10.1007/s10658-022-02599-3 DOI: https://doi.org/10.1007/s10658-022-02599-3

Saady, R. H. 2022. Combined effect of mechanical and biological control strategies for managing Bemisia tabaci (Hemiptera: Aleyrodidae). Asian J Res Biol, 5: 14-18.

Siddhardha, B., Prabhakar, P., Suryanarayana, M., and Venkateswarlu, Y. 2009. Isolation and biological evaluation of two bioactive metabolites from Aspergillus gorakhpurensis. Rec Nat Prod, 3: 161-164.

Silva, W. O. B., Santi, L., Scharank, A., and Vainstein, M. H. 2010. Metarhizium anisopliae lipolytic activity plays a pivotal role in Rhipicepthalus (Boophilus) microplus infection. Fungal Biol, 144: 10-15. https://doi.org/10.1016/j.mycres.2009.08.003 DOI: https://doi.org/10.1016/j.mycres.2009.08.003

Umaru, F. F., and Simarani, K. 2022. Efficacy of entomopathogenic fungal formulations against Elasmolomus pallens (Dallas) (Hemiptera: Rhyparochromidae) and their extracellular enzymatic activities. Toxins, 14: Article 584. https://doi.org/10.3390/toxins14090584 DOI: https://doi.org/10.3390/toxins14090584

Vey, A., Hoagland, R., and Butt, T. M. 2001. Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds.) Fungi as biocontrol agents progress, problems and potential (pp. 311-346). CABI Publishing, Wallingford. DOI: https://doi.org/10.1079/9780851993560.0311

Vidal, C., Fargues, J., Rougier, M., and Smits, N. 2003. Effect of air humidity on the infection potential of hyphomycetous fungi as mycoinsecticides for Trialeurodes vaporariorum. Biocontrol Sci Technol, 13: 183-198. https://doi.org/10.1080/0958315021000073457 DOI: https://doi.org/10.1080/0958315021000073457

Wang, C., Typas, M. A., and Butt, T. M. 2002. Detection and characterization of Pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett, 213: 251-255. https://doi. org/10.1111/j.1574-6968.2002.tb11314.x DOI: https://doi.org/10.1111/j.1574-6968.2002.tb11314.x

Wang, F., Liu, J., Dong, Y., Chen, P., Zhu, X., Liu, Y., and Ma, J. 2018. Insect-proof netting technique: Effective control of Bemisia tabaci and Tomato Chlorosis Virus (ToCV) in protected cultivations in China. Chil J Agric Res, 78: 48-58. http://dx.doi.org/10.4067/S0718-58392018000100048 DOI: https://doi.org/10.4067/S0718-58392018000100048

Włodarczyk, K., Smolińska, B., and Majak, I. 2023. The antioxidant potential of tomato plants (Solanum lycopersicum L.) under nano-zno treatment. Int J Mol Sci, 24: Article 11833. https://doi.org/10.3390/ijms241411833 DOI: https://doi.org/10.3390/ijms241411833

Zimmerman, G. 2008. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol, 18: 865- 901. https://doi.org/10.1080/09583150802471812 DOI: https://doi.org/10.1080/09583150802471812