In vitro studies on the development of microbial consortia for the management of major diseases in coconut and citrus

Jump To References Section

Authors

  • AICRP on Palms, Horticultural Research Station, Dr. Y.S.R. Horticultural University, Ambajipeta – 533214, Andhra Pradesh ,IN
  • AICRP on Palms, Horticultural Research Station, Dr. Y.S.R. Horticultural University, Ambajipeta – 533214, Andhra Pradesh ,IN
  • AICRP on Palms, Horticultural Research Station, Dr. Y.S.R. Horticultural University, Ambajipeta – 533214, Andhra Pradesh ,IN
  • Citrus Research Station, Dr. Y.S.R. Horticultural University, Tirupathi – 517502, Andhra Pradesh ,IN
  • AICRP on Palms, Horticultural Research Station, Dr. Y.S.R. Horticultural University, Ambajipeta – 533214, Andhra Pradesh ,IN
  • AICRP on Palms, Horticultural Research Station, Dr. Y.S.R. Horticultural University, Ambajipeta – 533214, Andhra Pradesh ,IN

DOI:

https://doi.org/10.18311/jbc/2024/43762

Keywords:

Basal stem rot, bud rot, coconut and citrus diseases, microbial consortia, leaf blight

Abstract

Microbial consortia for disease suppression involve combining multiple beneficial microorganisms to enhance their effectiveness in plant disease management. In present study, development of microbial consortia for the management of major diseases in coconut and citrus was carried out using bacteria Pseudomonas fluorescens, Pseudomonas putida (striata), Bacillus subtilis and fungi – Trichoderma reesei, T. harzianum, T. asperellum against major pathogens viz. Ganoderma lucidum, Thielaviopsis paradoxa, Phytopthora palmivora, Lasiodiplodia theobromae isolated from the coconut rhizosphere, and Fusarium solani isolated from the citrus rhizosphere. The promising fungal and bacterial antagonists were identified and studied for compatibility. Non-volatile compounds of consortia inhibited the test pathogens with an increase in concentration from 10 % to 75% with fungal consortia and bacterial consortia and also with mixed consortia which is composed of bacterial consortia + fungal consortia. Superior growth suppression was recorded with mixed consortia even at 10% concentration (59.44% to 65.83%) against the test pathogens in the ascending order of L. theobromae (59.44%) T. paradoxa (63.89%), G. lucidum (65.83%), P. palmivora (63.61%) and F. solani (62.78%). A similar trend was observed in 75% concentration where inhibition observed in the order of Thielaviopsis paradoxa (90.28%), G. lucidum (89.44%), F. solani (82.50%), L. theobromae (81.94%) and P. palmivora (81.39%). Volatile effect by bacterial consortia recorded the superior inhibition on test pathogens in the order of Ganoderma (85.28%), F. solani (75.28%), T. paradoxa (71.94%), P. palmivora (71.67%) and L. theobrome (67.50%) compared to the individual bioagents. Similarly, the fungal consortia showed the superior inhibitory effect on test pathogens in the order of G. lucidum (83.25%), P. palmivora (82.50%), L. theobromae (83.06%), F. solani (80.56%) and T. paradoxa (73.61%). Since there was no zone of inhibition between the strains, the interactions between Pseudomonas and Bacillus strains of Trichoderma spp. were compatible with one another. Neem cake recorded superior CFU population from 9.43 X 106 CFU at seven days by T. asperellum. Shelf life study on mixed consortia with bacterial + fungal bioagents in talc formulation indicated that all the bacterial and fungal CFU count recorded in 106 dilution for 90 days.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-10-08

How to Cite

RAO, V. G., NEERAJA, B., CHALAPATHIRAO, N. B. V., RAJASHEKARAM, T., KIREETI, A., & ANOOSHA, V. (2024). <i>In vitro</i> studies on the development of microbial consortia for the management of major diseases in coconut and citrus. Journal of Biological Control, 38(3), 284–301. https://doi.org/10.18311/jbc/2024/43762

Issue

Section

Research Articles
Received 2024-04-24
Accepted 2024-09-16
Published 2024-10-08

 

References

Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Env Microbiol, 62: 4081-4085. https://doi.org/10.1128/aem.62.11.4081-4085.1996

Dennis, C., and Webster, J. 1971. Antagonistic properties of species-groups of Trichoderma III: Hyphal interaction. Trans British Mycol Soc, 57: 363-369. https://doi.org/10.1016/S0007-1536(71)80050-5

Fukui, R., Schroth, M. N., Hendson, M., and Hancock, J. G. 1994. Interaction between strains of Pseudomonads in sugar beet spermospheres and the relationship to pericarp colonization by Pythium ultimum caused by Pythium aphanidermatum. Bio Sci Tech, 15: 55-65. https://doi.org/10.1094/Phyto-84-1322

Gaitan-Chaparro, S., Navia-Rodriguez, E., and Romero, H. M. 2021. Assessment of inoculation methods of Thielaviopsis paradoxa (De Seynes) Höhn into oil palm seedlings under greenhouse conditions. J Fungi (Basel), 7(11): Article 910. https://doi.org/10.3390/jof7110910

Grosch, R., Schneider, J. H. M., Kofoet, A., and Feller, C. 2011. Impact of continuous cropping of lettuce on the disease dynamics of bottom rot and genotypic diversity of Rhizoctonia solani AG 1-IB. J Phytopathol, 59: 35-44. https://doi.org/10.1111/j.1439-0434.2010.01708.x

Harshita, A., Sinha, J. B., Khan, S., Trivedi, A., and Rao, G. 2018. Compatibility of fungal and bacterial bio-agents and their antagonistic effect against Fusarium oxysporum f. Sp. Lycopersici. Int J Curr Micro Appl Sci, 7(7): 230516. https://doi.org/10.20546/ijcmas.2018.707.269

Jack, A. L. H., Rangarajan, A., Culman, S. W., Sooksa-Nguan, T., and Thies, J. E. 2011. Choice of organic amendments in tomato transplants has lasting effects on bacterial rhizosphere communities and crop performance in the field.. Appl Soil Ecol, 48(1): 94-101. https://doi.org/10.1016/j.apsoil.2011.01.003

Jayaraj, J., Radhakrishnan, N. V., Kannan, R., Sakthivel, K., Suganya, D., Venkatesan, S. and Velazhahan, R. 2005. Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum. Bio Sci Tech, 15: 55-65. https://doi.org/10.1080/09583150400015920

Khadeejath, T. H., Gupta, A., Gopal, M., Hegde, V., and Thomas, G. V. 2018. Evaluation of combinatorial capacity of coconut and cocoa Plant Growth Promoting Rhizobacteria (PGPR) with biocontrol agent Trichoderma harzianum. Curr Inv Agri Curr Res, 3(4): 404-9. https://doi.org/10.32474/CIACR.2018.03.000168

Kim, G. H., Lim, M. T., Hur, J. S., Yum, K. J., and Koh, Y. J. 2009. Biological control of tea anthracnose using an antagonistic bacterium of Bacillus subtilis isolated from tea leaves. Plant Path J, 25: 99-102. https://doi.org/10.5423/PPJ.2009.25.1.099

Kohl, J., Kolnaar, R., and Ravensberg, W. J. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Front Plant Sci, 10: Article 845. https://doi.org/10.3389/fpls.2019.00845

Lakshmi, T. N., Gopi, V., Sankar, T. G., Sarada, G., Lakshmi, L. M., Ramana, K. T. V., and Gopal, K. 2014. Status of diseases in sweet orange and acid lime orchards in Andhra Pradesh, India. Int J Curr Microbiol Appl Sci, 3(5): 513-518.

Ma, W., Zhao, L., Zhao, W., and Xie, Y. 2019. (E)-2-Hexenal, as a potential natural antifungal compound, inhibits Aspergillus flavus spore germination by disrupting mitochondrial energy metabolism. J Agric Food Chem, 67: 1138-1145. https://doi.org/10.1021/acs.jafc.8b06367

Maciag, T., Kozieł, E., Rusin, P., Otulak-Kozieł, K., Jafra, S., and Czajkowski, R. 2023. Microbial consortia for plant protection against diseases: More than the sum of its parts. Int J Mol Sci, 24(15): Article 12227. https://doi.org/10.3390/ijms241512227

Mathivanan, N., Prabavathy, V. R., and Vijayanandraj, R. 2005. Application of talc formulations of Pseudomonas fluorescens Migula and Trichoderma viride Pers. ex. S. F gray decrease the sheath blight disease and enhance the plant growth and yield in rice. J Phytopathol, 153: 697701. https://doi.org/10.1111/j.1439-0434.2005.01042.x

Molla, A. H., Fakhru’l-Razi, A., Abd-Aziz, S., Hanafi, M. M., and Alam, M. Z. 2001. In vitro compatibility evaluation of fungal mixed culture for bioconversion of domestic wastewater sludge. World J Microbiol Biotechnol, 17: 849-856. https://doi.org/10.1023/A:1013844306960

Punithalingam, E. 1976. Botryodiplodia theobromae. [Descriptions of fungi and bacteria]. CABI Digital Library. Rajeswari, P., and Kapoor, R. 2017. Combinatorial efficacy of Trichoderma sp. and Pseudomonas fluorescens to enhance suppression of cell wall degrading enzymes produced by Fusarium wilt of Arachis hypogaea L. Int J Agri Res Inno Tech, 7(2): 36-42. https://doi.org/10.3329/ijarit.v7i2.35320

Ramjegathesh, R., Johnson, I., Manjunath, H., and Maheswarappa, H. P. 2019. Characterization of Lasiodiplodia theobromae causing leaf blight disease of coconut. J Plant Crops, 47(2): 62-71. https://doi.org/10.1007/978-3-642-33639-3_11

Ramjegathesh, R., Samiyappan, R., Raguchander, T., Prabakar, K., and Saravanakumar, D. 2013. Plant– PGPR interactions for pest and disease resistance in sustainable agriculture. In: D. K. Maheshwari (Ed.).

Bacteria in agrobiology: Disease management (pp. 293320), Springer-Verlag Berlin Heidelberg.

Raupach, G. S., and Kloepper, J. W. 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathol, 88, 1158-1164. https://doi.org/10.1094/PHYTO.1998.88.11.1158

Raza S. A., Jawaid S. T., and Hassan A. 2015. Internet banking and customer satisfaction in Pakistan. Qual Res Financ Mark, 7(1): 24-36. https://doi.org/10.1108/ QRFM-09-2013-0027

Santra, H. K., and Banerjee, D. 2023. Antifungal activity of volatile and non-volatile metabolites of endophytes of Chloranthus elatior Sw. Front Plant Sci, 14: Article 1156323. https://doi.org/10.3389/fpls.2023.1156323

Siddiqui, I. A., and Shaukat, S. S. 2003. Combination of Pseudomonas aeruginosa and Pochonia chlamydosporia for control of root-infecting fungi in tomato. J Phytopathol, 151: 215-222. https://doi.org/10.1046/j.1439-0434.2003.00708.x

Skidmore, A. M., and Dickinson, C. H. 1976. Colony interactions and hyphal interference between Septorianodorum and phylloplane fungi. Trans Br Mycol Soc, 66: 57-64. https://doi.org/10.1016/S00071536(76)80092-7

Snehalatharani, A., Maheswarappa, H. P., Devappa, V., and Malhotra, S. K. 2016. Status of coconut basal stem rot disease in India. Indian J Agric Sci, 86(12): 1519-29. https://doi.org/10.56093/ijas.v86i12.65347

Someya, N., Kataoka, N., Komagata, T., Hirayae, K., Hibi, T., and Akutsu, K. 2000. Biological control of cyclamen soilborne diseases by Serratia marcescens strain B2. Plant Dis, 84: 334-340. https://doi.org/10.1094/PDIS.2000.84.3.334

Srinivasulu, B. 2008. AICAP on palms, HRS, Ambajipeta Technical Bulletin.

Srinivasulu, B., and Rao, D. V. R. 2009. Biocontrol of major diseases of coconut. In: P. Ponmurugan, and M.

A. Deepa (Eds). Role of biocontrol agents for disease management in sustainable agriculture (pp. 352-368).

SCITECH (India) Pvt., Chennai.

Suryadi, Y., Susilowati, D. N., Putri, K. E., and Mubarik, N. R. 2011. Antagonistic activity of indigenous Indonesian bacteria as the suppressing agent of rice fungal pathogen. J Int Environ Appl Sci, 6: 558-568.

You, J., Zhang, J., Wu, M., Yang, L., Chen, W., and Li G. 2016. Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biol Control, 101: 31-8. https://doi.org/10.1016/j.biocontrol.2016.06.006

Zhang, J., H., Tian, H., Sun, H., and Wang, X. 2017. Antifungal activity of trans-2-hexenal against Penicillium cyclopium by a membrane damage mechanism. J Food Biochem, 41: Article e12289. https://doi.org/10.1111/jfbc.12289

Rajeela, K. T. H., Gopal, M., Gupta, A., Bhat, R., and Thomas, G. V. 2017. Cross-compatibility evaluation of

plant growth promoting rhizobacteria of coconut and cocoa on yield and rhizosphere properties of vegetable crops. Biocatal Agric Biotechnol, 9: 67-73. https://doi.org/10.1016/j.bcab.2016.11.006