Gestational Exposure to Di(2-ethylhexyl)phthalate Modifies the Expression Pattern of Genes Controlling Thyroid Hormone Biosynthesis in Puberal Rat Progeny

Jump To References Section

Authors

  • Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN
  • Department of Endocrinology, Dr ALM PG Institute of Basic Medical Sciences, University of Madras,Taramani Campus, Chennai – 600113, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jer/2016/18116

Keywords:

Pendrin, Sodium/Iodide Symporter, Thyroperoxidase, Thyrotrophin Receptor, Hematopoietically Expressed Homeobox.

Abstract

Di(2-ethylhexyl) phthalate (DEHP), a plasticizer, is known to disrupt thyroid functions but the underlying molecular mechanism remains obscure. The present study was conducted testing the hypothesis that gestational exposure to DEHP would modify the expression of specific genes controlling biosynthesis and action of thyroid hormones in the male progeny at puberal age. Pregnant rats were administered with DEHP [1, 10 and 100 mg (in olive oil)/Kg b.wt./day] from embryonic day 9 to 21 through oral route. The pups were sacrificed on post-natal day 60. Enzyme Immuno-Assay (EIA) revealed a dose-dependent decrease in serum 3,5,3' triiodothyronine (T3) and L-thyroxine (T4) titres in DEHP-treated rats. Real-time RT-PCR and western blot analyses of thyroidal genes revealed decreased expression level of sodium/iodide symporter (Nis) and thyroid hormone receptor α (Trα), whereas the expression of thyroid stimulating hormone receptor (Tshr), thyroid hormone receptor β (Trβ) and pendrin (Pds) increased. While western blot detection showed decreased expression level of thyroperoxidase (Tpo), RTPCR data pointed out augmented expression. Western blot detection of transcriptional factors showed decreased expression levels of fork-headbox e1 (Foxe1) and hematopoietically expressed homeobox (Hhex), whereas thyroid transcription factor-1 (Ttf-1) and paired-box domain 8 (Pax8) increased. Our study demonstrates, for the first time, that gestational exposure to DEHP affects the expression of genes controlling thyroid hormone synthesis in puberal rat progeny, and the hypothyroid state in these rats may be linked to decreased expression of Nis, Tpo, Foxe1 and Hhex.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2018-03-02

How to Cite

Elangovan, S., Aruldhas, M. M., Suganya, S., Rajesh, P., Suthagar, E., Navin, A. K., Shobana, N., Ravi Sankar, B., & Ilangovan, R. (2018). Gestational Exposure to Di(2-ethylhexyl)phthalate Modifies the Expression Pattern of Genes Controlling Thyroid Hormone Biosynthesis in Puberal Rat Progeny. Journal of Endocrinology and Reproduction, 20(2), 92–101. https://doi.org/10.18311/jer/2016/18116

 

References

Chou K, Wright RO. Phthalates in food and medical devices. J Med Toxicol. 2006; 2:126–35. https://doi.org/10.1007/ BF03161027 PMCid:PMC3550149

Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW. Relationship between environmental phthalate exposure and the intelligence of school-age children. Environ Health Perspect. 2010; 118:1027–32. https://doi.org/10.1289/ehp.0901376 PMid:20194078 PMCid:PMC2920903

Shea KM. Pediatric exposure and potential toxicity of phthalate plasticizers. Pediatrics. 2003; 111(6 Pt 1):1467–74.https://doi.org/10.1542/peds.111.6.1467 PMid:12777573

Latini G. Monitoring phthalate exposure in humans. Clin Chim Acta. 2005; 361:20–9. https://doi.org/10.1016/j.cccn.2005.05.003 PMid:16004980

Silva MJ, Reidy JA, Herbert AR, Preau Jr JL, Needham LL, Calafat AM. Detection of phthalate metabolites in human amniotic fluid. Bull Environ Contam Toxicol. 2004; 72:1226–31. https://doi.org/10.1007/s00128-004-0374-4 PMid:15362453

Silva MJ, Samandar E, Preau Jr JL, Reidy JA, Needham LL, Calafat A. Automated solid-phase extraction and quantitative analysis of 14 phthalate metabolites in human serum using isotope dilution-high-performance liquid chromatographytandem mass spectrometry. J Anal Toxicol.2005; 29:819–24. https://doi.org/10.1093/jat/29.8.819 PMid:16374941

Zoeller RT. Environmental chemicals as thyroid hormone analogues: new studies indicate that thyroid hormone receptors are targets of industrial chemicals? Mol Cell Endocrinol. 2005; 242:10–5. https://doi.org/10.1016/j.mce.2005.07.006 PMid:16150534

Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol.2012; 355:240–8. https://doi.org/10.1016/j.mce.2011.09.005 PMid:21939731

Sekaran S, Jagadeesan A. In utero exposure to phthalate down regulates critical genes in Leydig cells of F1 male progeny. J Cell Biochem. 2015; 116:1466–77. https://doi.org/10.1002/jcb.25108 PMid:25649163

Rajesh P, Balasubramanian K. Gestational exposure to di(2-ethylhexyl) phthalate (DEHP) impairs pancreatic beta-cell function in F1 rat offspring. Toxicol Lett. 2015; 232:46–57. https://doi.org/10.1016/j.toxlet.2014.09.025 PMid:25280772

Poon R, Lecavalier P, Mueller R, Valli VE, Procter BG, Chu I. Subchronicoral toxicity of di-n-octyl phthalate and di(2ethylhexyl) phthalate in the rat. Food Chem Toxicol. 1997; 35:225–39. https://doi.org/10.1016/S0278-6915(96)00064-6

Hinton RH, Mitchell FE, Mann A. Effects of phthalic acid esters on the liver and thyroid. Environ Health Perspect. 1986; 70:195–210. https://doi.org/10.1289/ehp.8670195 PMid:3830106 PMCid:PMC1474287

Price SC, Chescoe D, Grasso P, Wright M, Hinton RH. Alterations in the thyroids of rats treated for long periods with di-(2-ethylhexyl) phthalate or with hypolipidaemic agents. Toxicol Lett. 1988; 40:37–46. https://doi.org/10.1016/0378-4274(88)90181-6

ATSDR. Toxicological profile for di(2-Ethylhexyl) Phthalate. Agency for Toxic Substances and Disease; 2002.

Howarth JA, Price SC, Dobrota M, Kentish PA, Hinton RH. Effects on male rats of di-(2-ethylhexyl) phthalate and dinhexylphthalate administered alone or in combination. Toxicol Lett. 2001; 121:35–43. https://doi.org/10.1016/ S0378-4274(01)00313-7

Wenzel A, Franz C, BreousE, Loos U. Modulation of iodide uptake by dialkylphthalate plasticizers in FRTL-5 rat thyroid follicular cells. Mol Cell Endocrinol. 2005; 244: 63–71. https://doi.org/10.1016/j.mce.2005.02.008 PMid:16289305

Breous E, Wenzel A, Loos U. The promoter of the human sodium/iodide symporter responds to certain phthalate plasticisers. Mol Cell Endocrinol. 2005; 244:75–8. https://doi.org/10.1016/j.mce.2005.06.009 PMid:16257484

Meeker JD, Calafat AM, Hauser R. Di-(2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ Health Perspect. 2007; 115:1029–34.https://doi.org/10.1289/ehp.9852 PMid:17637918 PMCid:PMC1913587

Meeker JD, Ferguson KK. Relationship between urinary phthalate and bisphenol A concentrations and serum thyroid measures in US adults and adolescents from the National Health and Nutrition Examination Survey (NHANES) 2007–2008. Environ Health Perspect. 2011; 119:1396–402. https://doi.org/10.1289/ehp.1103582 PMid:21749963 PMCid:PMC3230451

Van dartel DA, Pennings JL, Hendriksen PJ, Van schooten FJ, Piersma AH. Early gene expression changes during embryonic stem cell differentiation into cardiomyocytes and their modulation by monobutyl phthalate. Reprod Toxicol. 2009; 27:93–102. https://doi.org/10.1016/j.reprotox.2008.12.009 PMid:19162170

Damante G, Tell G, DiLauro R. A unique combination of transcription factors controls differentiation of thyroid cells. Prog Nucleic Acid Res Mol Biol. 2001; 66:307–56. https://doi.org/10.1016/S0079-6603(00)66033-6

Francis-Lang H, Zannini M, De Felice M, Berlingieri MT, Fusco A, DiLauro R. Multiple mechanisms of interference between transformation and differentiation in thyroid cells. Mol Cell Biol. 1992; 12:5793–800. https://doi.org/10.1128/ MCB.12.12.5793 PMid:1448106 PMCid:PMC360519

Koch HM, Drexler H, Angerer J. An estimation of the daily intake of Di(2-Ethylhexyl)Phthalate (DEHP) and other phthalates in the general population. Int J Hyg Environ Health. 2003; 206:77–83. https://doi.org/10.1078/14384639-00205 PMid:12708228

Frederiksen H, Aksglaede L, Sorensen K, Skakkebaek NE, Juul A, Andersson AM. Urinary excretion of phthalate metabolites in 129 healthy Danish children and adolescents: Estimation of daily phthalate intake. Environ Res. 2011; 111:656–63. https://doi.org/10.1016/j.envres.2011.03.005 PMid:21429484

Aruldhas MM, Ramalingam N, Jaganathan A, Sashi AMJ, Stanley JA, Nagappan AS, Vasavan J, Kannan A, Seshadri VN. Gestational and neonatal-onset hypothyroidism alters androgen receptor status in rat prostate glands at adulthood. Prostate. 2010; 70:689–700. PMid:20033886

Liu C, Zhao L, Wei L, Li L. DEHP reduces thyroid hormones via interacting with hormone synthesis-related proteins, deiodinases, transthyretin, receptors, and hepatic enzymes in rats. Environ Sci Pollut Res Int. 2015; 22:12711–9. https://doi.org/10.1007/s11356-015-4567-7 PMid:25913319

Stuart A, Oates E, Hall C, Grumbles R, Fernandez L, Taylor N, Puett D, Jin S. Identification of a point mutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol Endocrinol. 1994; 8:129–38. https://doi.org/10.1210/ mend.8.2.8170469 https://doi.org/10.1210/me.8.2.129

Shupnik MA, Ridgway EC, Chin WW. Molecular biology of thyrotropin. Endocr Rev. 1989; 10:459–75. https://doi.org/10.1210/edrv-10-4-459 PMid:2693083

Roelfsema F, Veldhuis JD. Thyrotropin secretion patterns in health and disease. Endocr Rev. 2013; 34:619–57. https:// doi.org/10.1210/er.2012-1076 PMid:23575764

Ishihara A, Sawatsubashi S, Yamauchi K. Endocrine disrupting chemicals: Interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol Cell Endocrinol. 2003; 199:105–17. https://doi.org/10.1016/S0303-7207(02)00302-7

Sugiyama S, Shimada N, Miyoshi H, Yamauchi K. Detection of thyroid system-disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis. Toxicol Sci. 2005; 88:367–74. https://doi.org/10.1093/toxsci/kfi330 PMid:16179385

Bizhanova A, Kopp P. Minireview: The sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology. 2009; 150:1084-90. https://doi.org/10.1210/ en.2008-1437 PMid:19196800 PMCid:PMC2654752

Kohn LD, Suzuki K, Nakazato M, Royaux I, Green ED. Effects of thyroglobulin and pendrin on iodide flux through the thyrocyte. Trends Endocrinol Metab. 2001; 12:10-16.https://doi.org/10.1016/S1043-2760(00)00337-4

Lin JD. Thyroglobulin and human thyroid cancer. Clin Chim Acta. 2008; 388:15–21. https://doi.org/10.1016/j.cca.2007.11.002 PMid:18060877

Kohn LD, Shimura H, Shimura Y, Hidaka A, Giuliani C, Napolitano G, Ohmori M, Laglia G, Saji M. The thyrotropin receptor. Vitamins and Hormones. 1995; 50:287–384.https://doi.org/10.1016/S0083-6729(08)60658-5

Kambe F and Seo H. Thyroid-specific transcription factors. J of Endocrinol. 1997; 44:775–84. https://doi.org/10.1507/ endocrj.44.775

Dohan O, De la Vieja A and Paroder V. Molecular analysis of the sodium/iodide symporter: Characterization, regulation, and medical significance. Endocr Rev. 2003; 24:48–77. https://doi.org/10.1210/er.2001-0029 PMid:12588808

Taki K, Kogai T, Kanamoto Y, Hershman JM, Brent GA. A thyroid-specific far-upstream enhancer in the human sodium/ iodide symporter gene requires Pax-8 binding and cyclic adenosine 3',5'-monophosphate response elementlike sequence binding proteins for full activity and is differentially regulated in normal and thyroid cancer cells.Mol Endocrinol. 2002; 16:2266–82. https://doi.org/10.1210/ me.2002-0109 PMid:12351692

Most read articles by the same author(s)