Impacts of Protein-, L-Tryptophan-, Carbohydrate-, Oil-Rich Diets on Growth Performance, Levels of Melatonin, Oxidative Stress, Antioxidative Agents, and Vital Digestive Enzymes in the Gut of Juvenile Carp (Catla catla)
DOI:
https://doi.org/10.18311/jer/2023/34512Keywords:
Digestive Efficacy, Fish Feeds, Gut Melatonin, Juvenile Carp, Oxidative Stress ManagementAbstract
The dietary protein, tryptophan, carbohydrate, and oil content of fish feed has many vital roles in the growth performances, stress management, and digestive physiology of fish. However, in this context, the functions of gut melatonin, which depends on the availability of food, timing of food supply, frequency of feeds/day, quality of food, and growth stages of carp, still need to be clarified. The present study aimed to investigate the impact of different experimental diets on growth performances, melatonin, oxidative stress and its essential antioxidants in the gut, and vital digestive enzymes of juvenile carp, Catla catla (mean body weight ~50g). The fish were fed any one of the seven diets viz. (i) a standard diet (SD/control) (with 34.99% protein, 14.56% carbohydrate, 9.84% oil, and 0.36% L-tryptophan) (ii) two protein (PRD1 with 41.02%, and PRD2 with 50.55% protein), (iii) two L-tryptophan (TrpRD1 with 0.96%, and TrpRD2 with 1.36% tryptophan), (iv) one carbohydrate (CRD with 24.62% carbohydrate), and (v) one oil (ORD with 14.68% oil) - rich diets for 30 days. Results indicated that the growth performance was better in PRDs, TrpRDs, and CRD compared to SD but not in ORD-fed carp. Further, PRDs and TrpRDs stimulated gut melatonin and suppressed oxidative stress by enhancing all the studied antioxidant levels. Upregulated digestive enzyme activities were also recorded after the PRDs and TrpRDs supply. However, CRD and ORD-fed groups exhibit less/no impact on most studied parameters, except digestive physiology. Nonetheless, the current study reports for the first time that PRDs and TrpRDs can modulate gut melatonin, oxidative stress, different antioxidants, and digestive efficacy.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
References
Mukherjee S, Maitra SK. Gut melatonin in vertebrates: Chronobiology and Physiology. Front Endocrinol. 2015; 6:112. https://doi.org/10.1016/j.ygcen.2020.113693
Fernández-Durán B, Ruibal C, Polakof S, Ceinos RM, Soengas JL, Míguez JM. Evidence for arylalkylamine N -acetyltransferase (AANAT2) expression in rainbow trout peripheral tissues with emphasis in the gastrointestinal tract. Gen Comp Endocrinol. 2007; 152(2-3):289-94. https://doi.org/10.1016/j.ygcen. 2006.12.008
Velarde E, Cerdá-Reverter JM, Alonso-Gómez AL, Sanchez E, Iosrna E, Delgado MJ. Melatonin-synthesizing enzymes in pineal, retina, liver, and gut of the goldfish (Carassius): mRNA expression pattern and regulation of daily rhythms by lighting conditions. Chronobiol Int. 2010; 27(6). https:// doi.org/10.3109/07420528. 2010.496911
Mukherjee S, Moniruzzaman M, Maitra SK. Daily and seasonal profiles of gut melatonin and their temporal relationship with pineal and serum melatonin in carp Catla catla under natural photo-thermal conditions. Biol Rhythm Res. 2014; 45(2):301-15. https://doi.org/10.1080/ 09291016.2013.817139
Mukherjee S, Moniruzzaman M, Maitra SK. Impact of artificial lighting conditions on the diurnal profiles of gut melatonin in a surface-dwelling carp (Catla catla). Biol Rhythm Res. 2014; 45(6):831-48. https://doi.org/10.1080/0 9291016.2014.923618
Paulin C-H, Cazaméa-Catalan D, Zilberman-Peled B, HerreraPerez P, Sauzet S, Magnanou E, et al. Subfunctionalization of arylalkylamine N‐acetyltransferases in the sea bass Dicentrarchus labrax : two‐ones for one two. J Pineal Res. 2015; 59(3):354-64. https://doi.org/10.1111/jpi.12266
Muñoz-Pérez JL, López-Patiño MA, Álvarez-Otero R, Gesto M, Soengas JL, Miguez JM. Characterization of melatonin synthesis in the gastrointestinal tract of rainbow trout (Oncorhynchus mykiss): Distribution, relation with serotonin, daily rhythms and photoperiod regulation. J Comp Physiol B. 2016; 186(4):471-84. https://doi. org/10.1007/ s00360-016-0966-4
Rajiv C, Devi HS, Mondal G, Devi SD, Khan ZA, Yumnamcha T, et al. Cloning, phylogenetic analysis and tissue distribution of melatonin bio-synthesizing enzyme genes (Tph1, Aanat1, Aanat2 and Hiomt ) in a tropical carp, Catla catla. Biol Rhythm Res. 2017; 48(3):371-86. https://doi.org/10.1080/09291016.2016.1263019
Devi HS, Rajiv C, Mondal G, Khan ZA, Devi SD, et al. Melatonin bio-synthesizing enzyme genes (Tph1, Aanat1, Aanat2, and Hiomt) and their temporal pattern of expression in brain and gut of a tropical carp in natural environmental conditions. Cogent Biol. 2016; 2(1):1230337. https://doi.org /10.1080/23312025.2016.1230337
Kulczykowska E, Kleszczyńska A, Gozdowska M, Sokołowska E. The time enzyme in melatonin biosynthesis in fish: Day/night expressions of three aralkylamine N-acetyltransferase genes in three-spined stickleback. Comp Biochem Physiol Part A. 2017; 208:46-53. https:// doi.org/10.1016/j.cbpa.2017.03.005
Sutradhar S, Yasmin F, Roy A, Sarkar R, Mukherjee S. A crosstalk between pineal and major extra-pineal sources of melatonin and its role in ovarian growth and maturation in fish. J Endocrinol Reprod. 2023; 27(2):73-90. https://doi. org/10.18311/jer/2023/33014
Mukherjee S, Maitra SK. Effects of starvation, re-feeding and timing of food supply on daily rhythm features of gut melatonin in carp (Catla catla). Chronobiol Int. 2015; 32(9):1264-77. https://doi.org/10.3109/07420528.2015.1087020
Vera LM, De Pedro N, Gómez-Milán E, Delgado MJ, Sánchez-Muros MJ, Madrid JA, et al. Feeding entrainment of locomotor activity rhythms, digestive enzymes and neuroendocrine factors in goldfish. Physiol Behav. 2007; 90(2- 3):518-24. https://doi.org/10.1016/j.physbeh.2006.10.017
Choi JY, Kim NN, Choi YJ, Park MS, Choi CY. Differential daily rhythms of melatonin in the pineal gland and gut of goldfish Carassius auratus in response to light. Biol Rhythm Res. 2015; 47(1):145-61. https://doi.org/10.1080/09291016. 2015.1094964
Pal PK, Hasan KN, Maitra SK. Gut melatonin response to microbial infection in carp Catla catla. Fish Physiol Biochem. 2015; 42:579-92. https://doi.org/10.1007/s10695-015-0161-7
Pal PK, Hasan KN, Maitra SK. Temporal relationship between the daily profiles of gut melatonin, oxidative status and major digestive enzymes in carp Catla catla. Biol Rhythm Res. 2016; 47(5):755-71. https://doi.org/10.1080/09291016.2016.1191697
Lepage O, Larson ET, Mayer I, Winberg S. Tryptophan affects both gastrointestinal melatonin production and interrenal activity in stressed and nonstressed rainbow trout. J Pineal Res. 2005; 38(4):264-71. https://doi. org/10.1111/j.1600-079X.2004.00201.x
Mukherjee S, Maitra SK. Daily profiles of serum and gastrointestinal melatonin in response to daytime or nighttime supply of tryptophan-rich diet in carp (Catla catla). Biol Rhythm Res. 2018; 49(2):315-27 https://doi.org/10.108 0/09291016.2017.1361157
Yasmin F, Sutradhar S, Das P, Mukherjee S. Gut melatonin: A potent candidate in the diversified journey of melatonin research. Gen Comp Endocrinol. 2021; 303. https://doi. org/10.1016/j.ygcen.2020.113693
Sutradhar S, Yasmin F, Roy A, Sarkar R, Mukherjee S. Agerelated changes in the gut melatonin levels and its possible role in the regulation of feeding and digestibility, with the development of the gut from fingerling to adult stages of carp, Catla catla. J Comp Physiol B. 2023; 193:647-60. https://doi.org/10.1007/s00360-023-01519-z
Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods. 2020; 75. https://doi.org/10.1016/j.jff.2020.104248
Brzozowska I, Konturek PC, Brzozowski T, Konturek SJ, Kwiecien S, Pajdo R, et al. Role of prostaglandins, nitric oxide, sensory nerves and gastrin in acceleration of ulcer healing by melatonin and its precursor, L-tryptophan. J Pineal Res. 2002; 32(3):149-62. https://doi.org/10.1034/ j.1600-079x.2002.1o811.x
Konturek PC, Brzozowski T, Konturek SJ. Stress and the gut: Pathophysiology, clinical consequences, diagnostic approach and treatment options. J Physiol Pharmacol. 2011; 62(6):591-9
Pal PK, Maitra SK. Response of gastrointestinal melatonin, antioxidants, and digestive enzymes to altered feeding conditions in carp (Catla catla). Fish Physiol Biochem. 2018; 44:1061-73. https://doi.org/10.1007/s10695-018-0494-0
Mondal G, Devi SD, Khan ZA, Yumnamcha T, Rajiv C, Devi HS, et al. The influence of feeding on the daily rhythm of mRNA expression on melatonin bio-synthesizing enzyme genes and clock associated genes in the zebrafish (Danio rerio) gut. Biol Rhythm Res. 2021; 53(7):1073-90. https:// doi.org/10.1080/09291016.2021.1905989
Mondal G, Devi SD, Khan ZA. Light, Feeding and Melatonin : An interplay in the appetite regulation in the gut of zebrafish (Danio rerio). J Endocrinol Reprod. 2019; 23:81-97. https://doi.org/10.18311/jer/2019/26748
National Research Council. Nutrient requirements of fish. Washington: National Academies Press; 1993. pp.144.
Edwards DJ, Austreng E, Risa S, Gjedrem T. Carbohydrate in rainbow trout diets. I. Growth of fish of different families fed diets containing different proportions of carbohydrate. Aquaculture. 1977; 11(1):31-8. https://doi. org/10.1016/0044-8486(77)90151-X
Ren M, Habte-Tsion H-M, Xie J, Liu B, Zhou Q, Ge X, et al. Effects of dietary carbohydrate source on growth performance, diet digestibility and liver glucose enzyme activity in blunt snout bream, Megalobrama amblycephala. Aquaculture. 2015; 438:75-81. https://doi.org/10.1016/j. aquaculture.2015.01.008
Wu C, Ye J, Gao J, Chen L, Lu Z. The effects of dietary carbohydrate on the growth, antioxidant capacities, innate immune responses and pathogen resistance of juvenile Black carp Mylopharyngodon piceus. Fish Shellfish Immunol. 2016; 49:132-42. https://doi.org/10.1016/j.fsi.2015.12.030
Hemre G-I, Mommsen TP, Krogdahl Å. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr. 2002; 8(3):175-94. https:// doi.org/10.1046/j.1365-2095.2002.00200.x
Chou B-S, Shiau S-Y. Optimal dietary lipid level for growth of juvenile hybrid tilapia, Oreochromis niloticus X Oreochromis aureus. Aquaculture. 1996; 143(2):185-95. https://doi.org/10.1016/0044-8486(96)01266-5
Vergara JM, López-Calero G, Robaina L, Caballero MJ, Montero D, Izquierdo MS, et al. Growth, feed utilization and body lipid content of gilthead seabream (Sparus aurata) fed increasing lipid levels and fish meals of different quality. Aquaculture. 1999; 179(1-4):35-44. https://doi. org/10.1016/S0044-8486(99)00150-7
Caballero M, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo MS. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture. 2002; 214(1-4):253-71. https://doi. org/10.1016/S0044-8486(01)00852-3
Wang J-T, Liu Y-J, Tian L-X, Mai K-S, Du Z-Y, Wang Y, et al. Effect of dietary lipid level on growth performance, lipid deposition, hepatic lipogenesis in juvenile cobia (Rachycentron canadum). Aquaculture. 2005; 249(1-4):439- 47. https://doi.org/10.1016/j.aquaculture.2005.04.038
Talukdar A, Deo AD, Sahu NP, Sardar P, Aklakur M, Prakash S, et al. Effects of dietary protein on growth performance, nutrient utilization, digestive enzymes and physiological status of grey mullet, Mugil cephalus L. fingerlings reared in inland saline water. Aquac Nutr. 2020; 26(3):921-35. https://doi.org/10.1111/anu.13050
Santos WM, Costa LS, López-Olmeda JF, Costa NCS, Santos FAC, Oliveira CG, et al. Dietary protein modulates digestive enzyme activities and gene expression in red tilapia juveniles. Animal. 2020; 14(9):1802-10. https://doi. org/10.1017/S1751731120000543
Li L, Liu X, Wang Y, Huang Y, Wang C. Effects of alternate feeding between fish meal and novel protein diets on the intestinal health of juvenile largemouth bass (Micropterus salmoides). Aquac Reports. 2022; 23. https://doi. org/10.1016/j.aqrep.2022.101023
Yu H, Ge X, Zhang L, Chen X, Ren M, Liang H, et al. Transcriptome analysis reveals the feeding response and oxidative stress in juvenile Micropterus salmoides fed a lowfish-meal diet with enzyme-hydrolysed intestinal mucosa protein substitution. Aquaculture. 2023; 570. https://doi. org/10.1016/j.aquaculture.2023.739441
Kong Y, Ding Z, Zhang Y, Zhou P, et al. Types of carbohydrate in feed affect the growth performance, antioxidant capacity, immunity, and activity of digestive and carbohydrate metabolism enzymes in juvenile Macrobrachium nipponense. Aquaculture. 2019; 512. https://doi.org/10.1016/j.aquaculture.2019.734282
Wang J, Lan K, Wu G, Wang Y, Zhou C, Lin H, et al. Effect of dietary carbohydrate level on growth, feed utilization, energy retention, body composition, and digestive and metabolic enzyme activities of juvenile cobia, Rachycentron canadum. Aquac Reports. 2022; 25. https:// doi.org/10.1016/j.aqrep.2022.101211
Castro C, Peréz-Jiménez A, Coutinho F, Díaz-Rosales P, dos Reis Serra CA, Panserat S, et al. Dietary carbohydrate and lipid sources affect differently the oxidative status of European sea bass (Dicentrarchus labrax ) juveniles. Br J Nutr. 2015; 114(10):1584-93. https://doi.org/10.1017/S0007 114515003360
Castro C, Diógenes AF, Coutinho F, Panserat S, DíazRosales P, Corraze G, Pérez-Jiménez A, et al. Liver and intestine oxidative status of gilthead sea bream fed vegetable oil and carbohydrate rich diets. Aquaculture. 2016; 464:665- 72. https://doi.org/10.1016/j.aquaculture.2016.08.005
Castro C, Couto A, Diógenes AF, Corraze G, Panserat S, Serra CR, et al. Vegetable oil and carbohydrate-rich diets marginally affected intestine histomorphology, digestive enzymes activities, and gut microbiota of gilthead sea bream juveniles. Fish Physiol Biochem. 2019; 45(2):681-95. https://doi.org/10.1007/s10695-018-0579-9
Tang B, Bu X, Lian X, Zhang Y, Muhammad I, Zhou Q, et al. Effect of replacing fish meal with meat and bone meal on growth, feed utilization and nitrogen and phosphorus excretion for juvenile Pseudobagrus ussuriensis. Aquac Nutr. 2018; 24(2):894-902. https://doi.org/10.1111/ anu.12625
Zhao Y, Wu X, Xu S, Xie J, Xiang K-w, Feng L, et al. Dietary tryptophan affects growth performance, digestive and absorptive enzyme activities, intestinal antioxidant capacity, and appetite and GH-IGF axis-related gene expression of hybrid catfish (Pelteobagrus vachelli♀ × Leiocassis longirostris♂). Fish Physiol Biochem. 2019; 45(5):1627-47. https://doi.org/10.1007/s10695-019-00651-4
Mardones O, Oyarzún-Salazar R, Labbé BS, Miguez JM, Vargas-Chacoff L, Muñoz JLP. Intestinal variation of serotonin, melatonin, and digestive enzymes activities along food passage time through GIT in Salmo salar fed with supplemented diets with tryptophan and melatonin. Comp Biochem Physiol Part A. 2022; 266. https://doi. org/10.1016/j.cbpa.2022.111159
Sharf Y, Khan MA. Dietary tryptophan requirement of fingerling Channa punctatus (Bloch) based on growth, hematological parameters, intestinal enzymes, nonspecific immune response, and antioxidant capacity. Aquaculture. 2023, 562. https://doi.org/10.1016/j. aquaculture.2022.738745
Huether G, Poeggeler B, Reimer A, George A. Effect of tryptophan administration on circulating melatonin levels in chicks and rats evidence for stimulation of melatonin synthesis and release in the gastrointestinal tract. Life Sci. 1992; 51(12):945-53. https://doi.org/10.1016/0024- 3205(92)90402-B
Herrero MJ, Martínez FJ, Míguez JM, Madrid JA. Response of plasma and gastrointestinal melatonin, plasma cortisol and activity rhythms of European sea bass (Dicentrarchus labrax) to dietary supplementation with tryptophan and melatonin. J Comp Physiol B. 2007; 177(3):319-26. https:// doi.org/10.1007/s00360-006-0131-6
Sony NM, Ishikawa M, Hossain MS, Yokoyama S. The effect of dietary fucoidan on growth, immune functions, blood characteristics and oxidative stress resistance of juvenile red sea bream, Pagrus major. Fish Physiol Biochem. 2019; 45:439-54. https://doi.org/10.1007/s10695-018-0575-0
Ackermann K, Ballantyne KN, Kayser M. Estimating trace deposition time with circadian biomarkers: A prospective and versatile tool for crime scene reconstruction. Int J Legal Med. 2010; 124:387-95. https://doi.org/10.1007/s00414- 010-0457-1
Khan ZA, Yumnamcha T, Rajiv C, Devi HS, Mandal G, et al. Melatonin biosynthesizing enzyme genes and clock genes in ovary and whole brain of zebrafish (Danio rerio): Differential expression and a possible interplay. Gen Comp Endocrinol. 2016; 233:16-31. https://doi.org/10.1016/j. ygcen.2016.05.014
Draper HH, Hadley M. Malondialdehyde determination as index of lipid Peroxidation. Methods Enzymol. 1990; 186:421-31. https://doi.org/10.1016/0076-6879(90)86135-I
Ewing JF, Janero DR. Microplate superoxide dismutase assay employing a nonenzymatic superoxide generator. Anal Biochem. 1995; 232(2):243-8. https://doi.org/10.1006/ abio.1995.0014
Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105:121- 6. https://doi.org/10. 1016/S0076-6879(84)05016-3
Aksoy Y, Balk M, Üfi HÖ, Özer N. The mechanism of inhibition of human erythrocyte catalase by Azide. Turkish J Biol. 2004; 28(2-4):65-70.
Castro R, Piazzon MC, Noya M, Leiro JM, Lamas J. Isolation and molecular cloning of a fish myeloperoxidase. Mol Immunol. 2008; 45(2):428-37. https://doi.org/10.1016/j. molimm.2007.05.028
Pinto RE, Bartley W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J. 1969; 112(1):109-15. https://doi.org/10.1042/bj1120109
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974; 249(22):7130-9. https://doi. org/10.1016/S0021-9258(19)42083-8
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82:70-7. https://doi.org/10.1016/0003- 9861(59)90090-6
Bernfeld P. Amylases, α and β. Methods Enzymol. 1955; 1:149-58. https://doi.org/10.1016/0076-6879(55)01021-5 63. Walter HE. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HU, editor. Methods of enzymatic analysis. Vol. 5. Weinheim. Verlag Chemie; 1984 pp. 270-7.
Bier M. Lipases: RCOORʹ + H2O → RCOOH + RʹOH. In: Colowick SP, Kaplan NO, editors. Methods in enzymology. New York. Academic Press; 1955 pp. 627-42. https://doi. org/10.1016/0076-6879(55)01111-7
Denison DA, Koehn RD. Cellulase activity of Poronia oedipus. Mycologia. 1977; 69(3):592-603. https://doi. org/10.2307/3758562
Zar JH. Biostatistical analysis, 4th ed. Upper Saddle River. Prentice Hall; 1999.
Kpogue DNS, D’almeida AFM, Houankanlin N, Fiogbe ED. Influence of Dietary Lipid Levels on Growth Performances, Survival, Feed Utilization and Carcass Composition of African Snakehead Parachanna Obscura Fingerlings. South Asian J Life Sci. 2018; 6(2):36-40. https://doi.org/10.17582/ journal.sajls/2018/6.2.36.40
Kaushik SJ, Cravedi JP, Lalles JP, Laroche M. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture. 1995; 133(3-4):257-74. https://doi.org/10.1016/0044-8486(94)00403-B
Pianesso D, Radünz Neto J, da Silva LP, Goulart FR, Adorian TJ, Mombach PI, et al. Determination of tryptophan requirements for juvenile silver catfish (Rhamdia quelen) and its effects on growth performance, plasma and hepatic metabolites and digestive enzymes activity. Anim Feed Sci Technol. 2015; 210:172-83. https://doi.org/10.1016/j. anifeedsci.2015.09.025
Pewitt E, Castillo S, Velásquez A, Gatlin DM. The dietary tryptophan requirement of juvenile red drum, Sciaenops ocellatus. Aquaculture. 2017; 469:112-6. https://doi. org/10.1016/j.aquaculture.2016.11.030
Ahmed I, Khan MA. Dietary tryptophan requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquac Res. 2005; 36(7):687-95. https://doi.org/10.1111/ j.1365-2109.2005.01275.x
Ahmed I. Dietary amino acid L-tryptophan requirement of fingerling Indian catfish, Heteropneustes fossilis (Bloch), estimated by growth and haemato-biochemical parameters. Fish Physiol Biochem. 2012; 38(4):1195-209. https://doi. org/10.1007/s10695-012-9609-1
Zaminhan M, Boscolo WR, Neu DH, Feiden A, Furuya VRB, Furuya WB. Dietary tryptophan requirements of juvenile Nile tilapia fed corn-soybean meal-based diets. Anim Feed Sci Technol. 2017; 227:62-7. https://doi. org/10.1016/j.anifeedsci.2017.03.010
Tang L, Feng L, Sun CY, et al. Effect of tryptophan on growth, intestinal enzyme activities and TOR gene expression in juvenile Jian carp (Cyprinus carpio var. Jian): Studies in vivo and in vitro. Aquaculture. 2013; 412-413:23-33. https://doi. org/10.1016/j.aquaculture.2013.07.002
Calo J, Blanco AM, Comesaña S, Conde-Sieira M, Soengas JL. First evidence for the presence of amino acid sensing mechanisms in the fish gastrointestinal tract. Sci Rep. 2021; 11. https://doi.org/10.1038/s41598-021-84303-9.
Adamska-Patruno E, Ostrowska L, Goscik J, PieTraszewska B, Kretowski A, et al. The relationship between the leptin/ ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: A randomized crossover study. Nutr J. 2018; 17. https://doi.org/10.1186/ s12937-018-0427-x
Matzinger D, Gutzwiller JP, Drewe J, Orban A, Engel R, et al. Inhibition of food intake in response to intestinal lipid is mediated by cholecystokinin in humans. Am J Physiol - Regul Integr Comp Physiol. 1999; 277(6):R1718-24. https:// doi.org/10.1152/ajpregu.1999.277.6.r 1718
Sánchez J, Oliver P, Palou A, Picó C. The inhibition of gastric ghrelin production by food intake in rats is dependent on the type of macronutrient. Endocrinology. 2004; 145(11):5049- 55. https://doi.org/10.1210/en.2004-0493
Pomianowski K, Gozdowska M, Burzyński A, KalamarzKubiak H, Sckolowska E, et al. A study of aanat and asmt expression in the three-spined stickleback eye and skin: Not only “on the way to melatonin”. Comp Biochem Physiol Part A Mol Integr Physiol Comp Biochem Phys A. 2020; 241. https://doi.org/10.1016/j.cbpa.2019.110635
Gern WA, Wechsler E, Duvall D. Characteristics and nonrhythmicity of retinal hydroxyindole-O- methyltransferase activity in trout (Salmo gairdfferi). Gen Comp Endocrinol. 1984; 53(2):169-78. https://doi.org/10.1016/0016-6480(84)90239-9
Nisembaum LG, Tinoco AB, Moure AL, Gomez ALA, Delgado MJ, et al. The arylalkylamine-N-acetyltransferase (AANAT) acetylates dopamine in the digestive tract of goldfish: A role in intestinal motility. Neurochem Int. 2013; 62(6):873-80. https://doi.org/10.1016/j.neuint.2013.02.023
Bubenik GA, Dhanvantari S. Influence of serotonin and melatonin on some parameters of gastrointestinal activity. J Pineal Res. 1989; 7(4):333-44. https://doi.org/10.1111/ j.1600-079X.1989.tb00909.x
Chen CQ. Distribution, function and physiological role of melatonin in the lower gut. World J Gastroenterol. 2011; 17(34):3888-98. https://doi.org/10.3748/wjg.v17.i34. 3888
Lushchak V. Glutathione homeostasis and functions: Potential targets for medical interventions. J Amino Acids. 2012; 2012:1-26. https://doi.org/10.1155/2012/ 736837.
Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: A significant role for melatonin. J Pineal Res. 2004; 36(1):1-9. https://doi.org/10.1046/j.1600- 079X.2003.00092.x
Moniruzzaman M, Ghosal I, Das D, Chakraborty SB. Melatonin ameliorates Melatonin ameliorates H 2O2- induced oxidative stress through modulation of Erk/ Akt/NFkB pathway-induced oxidative stress through modulation of Erk/Akt/NFkB pathway. Biol Res. 2018; 51(1):17. https://doi.org/10.1186/s40659-018-0168-5.
Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr. 1993; 57(5):S715-25. https://doi.org/10.1093/ajcn/57.5.715S
Alvarez MJ, López-Bote CJ, Diez A, Corraze G, Arzel J, et al. The partial substitution of digestible protein with gelatinized starch as an energy source reduces susceptibility to lipid oxidation in rainbow trout (Oncorhynchus mykiss) and Sea Bass (Dicentrarchus labrax) muscle. J Anim Sci. 1999; 77(12):3322-9. https://doi.org/10.2527/1999.77123322x
Lygren B, Hemre GI. Influence of dietary carbohydrate on antioxidant enzyme activities in liver of Atlantic salmon (Salmo solar L.). Aquac Int. 2001; 9:421-7. https://doi. org/10.1023/A:1020530432508
Sagone AL, Greenwald J, Kraut EH, Bianchine J, Singh D, et al. Glucose: A role as a free radical scavenger in biological systems. J Lab Clin Med. 1983; 101(1):97-104.
Pérez-Jiménez A, Abellán E, Arizcun M, et al. Dietary carbohydrates improve oxidative status of common dentex (Dentex dentex) juveniles, a carnivorous fish species. Comp Biochem Physiol Part A. 2017; 203:17-23. https://doi. org/10.1016/j.cbpa. 2016.08.014
Mardones O, Devia E, Labbé BS, Oyarzun R, VargasChacoff L, et al. Effect of L-tryptophan and melatonin supplementation on the serotonin gastrointestinal content and digestive enzymatic activity for Salmo salar and Oncorhynchus kisutch. Aquaculture. 2018; 482:203-10. https://doi.org/10.1016/j.aquaculture.2017.10.003
Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K, et al. Links between dietary protein sources, the gut microbiota, and obesity. Front Physiol. 2017; 8. https://doi.org/10.3389/ fphys.2017.01047
Poston HA, Rumsey GL. Factors affecting dietary requirement and deficiency signs of L-tryptophan in rainbow trout. J Nutr. 1983; 113(12):2568-77. https://doi. org/10.1093/jn/113.12.2568
Villasante A, Ramírez C, Catalán N, Opazo R, Dantagnan P, et al. Effect of dietary carbohydrate-to-protein ratio on gut microbiota in atlantic salmon (Salmo salar). Animals. 2019; 9(3):89. https://doi.org/10.3390/ani9030089
Magalhães R, Guerreiro I, Santos RA, Coutinho F, Couto A, et al. Oxidative status and intestinal health of gilthead sea bream (Sparus aurata) juveniles fed diets with different ARA/EPA/DHA ratios. Sci Rep. 2020; 10(1):1-13. https:// doi.org/10.1038/s41598-020-70716-5
Gao J, Xu K, Liu H, Liu G, Bai M, et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front Cell Infect Microbiol. 2018; 8. https://doi.org/10.3389/fcimb.2018.00013
Liang H, Dai Z, Kou J, Sun K, Chen J, Yang Y, et al. Dietary L-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: Implication of tryptophan-metabolizing microbiota. Int J Mol Sci. 2018; 20(1):1-13. https://doi.org/10.3390/ ijms20010020
Phadate S V, Srikar LN. Effect of formulated feeds on the amylase activity and growth in three species of carps. Proc Anim Sci. 1990; 99(5):387-90. https://doi.org/10.1007/ BF03191871
Aprajita, Jain KK, Sahu NP, Aklakur M, Ranjan A. Effect of different levels of dietary carbohydrate on growth and metabolic enzyme activity in Clarias batrachus (Linnaeus, 1758). Int J Curr Microbiol Appl Sci. 2017; 6(11):781-91. https://doi.org/10.20546/ ijcmas.2017.611.092