Perspectives of PCOS Pathophysiology: Exploring the Interplay between PCOS and the Gut Microbiota

Jump To References Section

Authors

  • Molecular Endocrinology Laboratory, ICMR National Institute for Research in Reproductive and Child Health, Mumbai - 400012, Maharashtra ,IN
  • Molecular Endocrinology Laboratory, ICMR National Institute for Research in Reproductive and Child Health, Mumbai - 400012, Maharashtra ,IN
  • Molecular Endocrinology Laboratory, ICMR National Institute for Research in Reproductive and Child Health, Mumbai - 400012, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jer/2023/34986

Keywords:

Gut Microbiota, Gut Metabolites, Hyperandrogenism, Insulin-Resistance, Obesity, PCOS

Abstract

PCOS is a gynecological and metabolic concern for numerous women of reproductive age. Its pathophysiology broadly entails hyperandrogenism, insulin resistance, and neuroendocrine dysfunction, and is heavily influenced by genetic and epigenetic factors. However, its precise aetiology remains unclear. The gut microbiome is a major endocrine organ and plays a key role in host metabolism through its metabolites which regulate diverse host physiology like metabolism, immunity, etc. Numerous studies have described associations of altered microbiota in the progress and development of major human diseases. The studies conducted on animals and humans have suggested that the gut microbiota and its metabolites are involved in the pathogenesis of PCOS and its associated attributes such as insulin resistance, obesity and inflammation. Moreover, supplementation of probiotics/prebiotics has been reported to relieve the adverse metabolic and hormonal parameters effectively. Knowledge of this link between gut dysbiosis and PCOS has also spurred research interest in exploring novel management of PCOS. In this review, we have discussed the role of gut microbiota dysbiosis and its metabolite in the progression and treatment of PCOS.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-09-12

How to Cite

Khade, K., Dadachanji, R., & Mukherjee, S. (2023). Perspectives of PCOS Pathophysiology: Exploring the Interplay between PCOS and the Gut Microbiota. Journal of Endocrinology and Reproduction, 27(3), 131–146. https://doi.org/10.18311/jer/2023/34986

Issue

Section

Review Article Presented at SRBCE 2023

 

References

Goh JE, Farrukh MJ, Keshavarzi F, et al. Assessment of prevalence, knowledge of Polycystic Ovary Syndrome and health-related practices among women in Klang Valley: A cross-sectional survey. Front Endocrinol (Lausanne). 2022; 13:985588. https://doi.org/10.3389/fendo.2022.985588. DOI: https://doi.org/10.3389/fendo.2022.985588

Ovalle F, Azziz R. Insulin resistance, Polycystic Ovary Syndrome, and Type 2 Diabetes Mellitus. Fertil Steril. 2002; 77(6):1095–105. https://doi.org/10.1016/S00150282(02)03111-4. DOI: https://doi.org/10.1016/S0015-0282(02)03111-4

Wang ET, Calderon-Margalit R, Cedars MI, et al. Polycystic Ovary Syndrome and risk for long-term diabetes and dyslipidemia. Obstet Gynecol. 2011; 117(1):6–13. https://doi.org/10.1097/AOG.0b013e31820209bb. DOI: https://doi.org/10.1097/AOG.0b013e31820209bb

Mukherjee S, Maitra A. Molecular and genetic factors contributing to insulin resistance in Polycystic Ovary Syndrome. Indian J Med Res. 2010; 131:743–60.

Rudnicka E, Suchta K, Grymowicz M, et al. Chronic low-grade inflammation in the pathogenesis of PCOS. Int J Mol Sci. 2021; 22(7). https://doi.org/10.3390/ijms22073789. DOI: https://doi.org/10.3390/ijms22073789

Mancini A, Bruno C, Vergani E, d’Abate C, et al. Oxidative stress and low-grade inflammation in Polycystic Ovary Syndrome: controversies and new insights. Int J Mol Sci. 2021; 22(4). https://doi.org/10.3390/ijms22041667. DOI: https://doi.org/10.3390/ijms22041667

Khan MJ, Ullah A, Basit S. Genetic basis of Polycystic Ovary Syndrome (PCOS): Current Perspectives. Appl Clin Genet. 2019; 12:249–60. https://doi.org/10.2147/TACG.S200341. DOI: https://doi.org/10.2147/TACG.S200341

Siddiqui S, Mateen S, Ahmad R, Moin S. A brief insight into the etiology, genetics, and immunology of PCOS. J Assist Reprod Genet. 2022; 39(11):2439–73. https://doi.org/10.1007/s10815-022-02625-7. DOI: https://doi.org/10.1007/s10815-022-02625-7

Stener-Victorin E, Deng Q. Epigenetic inheritance of Polycystic Ovary Syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol. 2021; 17(9):521–33. https://doi.org/10.1038/s41574-02100517-x. DOI: https://doi.org/10.1038/s41574-021-00517-x

Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018; 57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8. DOI: https://doi.org/10.1007/s00394-017-1445-8

Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012; 3(1):4–14. https://doi.org/10.4161/gmic.19320. DOI: https://doi.org/10.4161/gmic.19320

Chen Y, Zhou J, Wang L. Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 2021; 11. https://doi.org/10.3389/fcimb.2021.625913. DOI: https://doi.org/10.3389/fcimb.2021.625913

Tremellen K, Pearce K. Dysbiosis of Gut Microbiota (DOGMA)--a novel theory for the development of Polycystic Ovarian Syndrome. Med Hypotheses. 2012; 79(1):104-12. https://doi.org/10.1016/j.mehy.2012.04.016. DOI: https://doi.org/10.1016/j.mehy.2012.04.016

Singh S, Pal N, Shubham S, et al. Polycystic Ovary Syndrome: etiology, current management, and future therapeutics. J Clin Med. 2023; 12(4):1454. https://doi.org/10.3390/jcm12041454. DOI: https://doi.org/10.3390/jcm12041454

Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cellular and Molecular Life Sciences. Birkhauser Verlag AG. 2019; 76:473–93. https://doi.org/10.1007/s00018-018-2943-4. DOI: https://doi.org/10.1007/s00018-018-2943-4

Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science.

; 308(5728):1635-8. https://doi.org/10.1126/science.1110591. DOI: https://doi.org/10.1126/science.1110591

Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesityassociated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122):1027–31. https://doi.org/10.1038/nature05414. DOI: https://doi.org/10.1038/nature05414

Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the

treatment of obesity and inflammatory bowel disease. Microorganisms. 2020; 8(11). https://doi.org/10.3390/microorganisms8111715. DOI: https://doi.org/10.3390/microorganisms8111715

An J, Kwon H, Kim YJ. The Firmicutes/Bacteroidetes ratio as a risk factor of breast cancer. J Clin Med. 2023; 12(6). https://doi.org/10.3390/jcm12062216. DOI: https://doi.org/10.3390/jcm12062216

Qi X, Yun C, Pang Y,Qiao J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes. Bellwether Publishing, Ltd. 2021; 13. https://doi.org/10.1080/19490976.2021.1894070. DOI: https://doi.org/10.1080/19490976.2021.1894070

Thackray VG. Sex, Microbes, and Polycystic Ovary Syndrome. Trends in Endocrinology and Metabolism. Elsevier Inc. 2019; 30:54–65. https://doi.org/10.1016/j.tem.2018.11.001. DOI: https://doi.org/10.1016/j.tem.2018.11.001

Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017; (4):611-9.e6. DOI: https://doi.org/10.1016/j.cmet.2017.09.008

Ryu Y, Kim SW, Kim YY, Ku SY. Animal models for human Polycystic Ovary Syndrome (PCOS) focused on the use of indirect hormonal perturbations: A Review of the literature. Int J Mol Sci. 2019; 20(11). https://doi.org/10.3390/ijms20112720. DOI: https://doi.org/10.3390/ijms20112720

Kelley ST, Skarra D V., Rivera AJ, Thackray VG. The gut microbiome is altered in a letrozole-induced mouse model of Polycystic Ovary Syndrome. PLoS One. 2016; 11(1). https://doi.org/10.1371/journal.pone.0146509. DOI: https://doi.org/10.1371/journal.pone.0146509

Rodriguez Paris V, Wong XYD, Solon-Biet SM, et al. The interplay between PCOS pathology and diet on gut microbiota in a mouse model. Gut Microbes. 2022; 14(1). https://doi.org/10.1080/19490976.2022.2085961. DOI: https://doi.org/10.1080/19490976.2022.2085961

Zheng Y, Yu J, Liang C, et al. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng. 2021; 44(5):953–64. https://doi.org/10.1007/s00449-020-02320-w. DOI: https://doi.org/10.1007/s00449-020-02320-w

Torres PJ, Ho BS, Arroyo P, et al. Exposure to a healthy gut microbiome protects against reproductive and metabolic dysregulation in a PCOS mouse model. Endocrinology. 2019; 160(5):1193–204. https://doi.org/10.1210/en.2019-00050. DOI: https://doi.org/10.1210/en.2019-00050

Lindheim L, Bashir M, Münzker J, et al. Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with Polycystic Ovary Syndrome (PCOS): A pilot Study. PLoS One. 2017; 12(1):e0168390. https://doi.org/10.1371/journal.pone.0168390. DOI: https://doi.org/10.1371/journal.pone.0168390

Yang Z, Fu H, Su H, et al. Multi-omics analyses reveal the specific changes in gut metagenome and serum metabolome of patients with Polycystic Ovary Syndrome. Front Microbiol. 2022; 13:1017147. https://doi.org/10.3389/fmicb.2022.1017147. DOI: https://doi.org/10.3389/fmicb.2022.1017147

Chu W, Han Q, Xu J, et al. Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and Polycystic Ovary Syndrome. Fertil Steril. 2020; 113(6):1286-98.e4. https://doi.org/10.1016/j.fertnstert.2020.01.027. DOI: https://doi.org/10.1016/j.fertnstert.2020.01.027

Garcia-Beltran C, Malpique R, Carbonetto B, et al. Gut microbiota in adolescent girls with Polycystic Ovary Syndrome: Effects of randomized treatments. Pediatr Obes. 2021; 16(4):e12734. https://doi.org/10.1111/ijpo.12734. DOI: https://doi.org/10.1111/ijpo.12734

Jobira B, Frank DN, Pyle L, et al. Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab. 2020; 105(6):e2134-44. https://doi.org/10.1210/clinem/dgz263. DOI: https://doi.org/10.1210/clinem/dgz263

Torres PJ, Siakowska M, Banaszewska B, et al. Gut microbial diversity in women with Polycystic Ovary Syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab. 2018; 103(4):1502–11. https://doi.org/10.1210/jc.2017-02153. DOI: https://doi.org/10.1210/jc.2017-02153

Zhang D, Zhang L, Yue F, et al. Serum zonulin is elevated in women with Polycystic Ovary Syndrome and correlates with insulin resistance and severity of anovulation. Eur J Endocrinol. 2015; 172(1):29–36. https://doi.org/10.1530/EJE-14-0589. DOI: https://doi.org/10.1530/EJE-14-0589

Zhou L, Ni Z, Cheng W, et al. Characteristic gut microbiota and predicted metabolic functions in women with PCOS. Endocr Connect. 2020; 9(1):63–73. https://doi.org/10.1530/EC-19-0522. DOI: https://doi.org/10.1530/EC-19-0522

Liu R, Zhang C, Shi Y, et al. Dysbiosis of gut microbiota associated with clinical parameters in Polycystic Ovary Syndrome. Front Microbiol. 2017; 8:324. https://doi.org/10.3389/fmicb.2017.00324. DOI: https://doi.org/10.3389/fmicb.2017.00324

Insenser M, Murri M, del Campo R, et al. Gut microbiota and the Polycystic Ovary Syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab. 2018; 103(7):2552–62. https://doi.org/10.1210/jc.2017-02799. DOI: https://doi.org/10.1210/jc.2017-02799

Liang Y, Ming Q, Liang J, et al. Gut microbiota dysbiosis in Polycystic Ovary Syndrome: association with obesity - a preliminary report. Can J Physiol Pharmacol. 2020; 98(11):803–9. https://doi.org/10.1139/cjpp-2019-0413.

Mammadova G, Ozkul C, Yilmaz Isikhan S, et al. Characterization of gut microbiota in Polycystic Ovary Syndrome: Findings from a lean population. Eur J Clin Invest. 2021; 51(4):e13417. https://doi.org/10.1111/eci.13417. DOI: https://doi.org/10.1111/eci.13417

Yin G, Chen F, Chen G, et al. Alterations of bacteriome, mycobiome and metabolome characteristics in PCOS patients with normal/overweight individuals. J Ovarian Res. 2022; 15(1):117. https://doi.org/10.1186/s13048022-01051-8. DOI: https://doi.org/10.1186/s13048-022-01051-8

Hassan S, Kaakinen MA, Draisma H, et al. Bifidobacterium is enriched in the gut microbiome of Kashmiri women with Polycystic Ovary Syndrome. Genes (Basel). 2022; 13(2):379. https://doi.org/10.3390/genes13020379. DOI: https://doi.org/10.3390/genes13020379

Zeng B, Lai Z, Sun L, et al. Structural and functional profiles of the gut microbial community in Polycystic Ovary Syndrome with insulin resistance (IR-PCOS): a pilot study. Res Microbiol. 2019; 170(1):43–52. https://doi.org/10.1016/j.resmic.2018.09.002. DOI: https://doi.org/10.1016/j.resmic.2018.09.002

Qi X, Yun C, Sun L, et al. Gut microbiota-bile acid-interleukin22 axis orchestrates Polycystic Ovary Syndrome. Nat Med. 2019; 25(8):1225–33. https://doi.org/10.1038/s41591-019-0509-0. DOI: https://doi.org/10.1038/s41591-019-0509-0

Lüll K, Arffman RK, Sola-Leyva A, et al. The gut microbiome in Polycystic Ovary Syndrome and its association with metabolic traits. J Clin Endocrinol Metab. 2021; 106(3):858–71. https://doi.org/10.1210/clinem/dgaa848. DOI: https://doi.org/10.1210/clinem/dgaa848

Eyupoglu ND, Caliskan Guzelce E, Acikgoz A, et al. Circulating gut microbiota metabolite trimethylamine N‐oxide and oral contraceptive use in Polycystic Ovary Syndrome. Clin Endocrinol (Oxf). 2019; 91(6):810–5. https://doi.org/10.1111/cen.14101. DOI: https://doi.org/10.1111/cen.14101

Liang Y, Ming Q, Liang J, et al. Gut microbiota dysbiosis in Polycystic Ovary Syndrome: association with obesity — a preliminary report. Can J Physiol Pharmacol. 2020; 98(11):803–9. https://doi.org/10.1139/cjpp2019-0413. DOI: https://doi.org/10.1139/cjpp-2019-0413

Haudum C, Lindheim L, Ascani A, et al. Impact of short-term isoflavone intervention in Polycystic Ovary Syndrome (PCOS) patients on microbiota composition and metagenomics. Nutrients. 2020; 12(6):1622. https://doi.org/10.3390/nu12061622. DOI: https://doi.org/10.3390/nu12061622

Zhou L, Ni Z, Yu J, et al. Correlation between fecal metabolomics and gut microbiota in obesity and Polycystic Ovary Syndrome. Front Endocrinol (Lausanne). 2020; 11. https://doi.org/10.3389/fendo.2020.00628. DOI: https://doi.org/10.3389/fendo.2020.00628

Liang Z, Di N, Li L, Yang D. Gut microbiota alterations reveal potential gut-brain axis changes in Polycystic Ovary Syndrome. J Endocrinol Invest. 2021; 44(8):1727– 37. https://doi.org/10.1007/s40618-020-01481-5. DOI: https://doi.org/10.1007/s40618-020-01481-5

He F, Li Y. The gut microbial composition in Polycystic Ovary Syndrome with insulin resistance: findings from a normal-weight population. J Ovarian Res. 2021; 14(1):50. https://doi.org/10.1186/s13048-021-00799-9. DOI: https://doi.org/10.1186/s13048-021-00799-9

Dong S, jiao J, Jia S, et al. 16s rDNA full-length assembly sequencing technology analysis of intestinal microbiome in Polycystic Ovary Syndrome. Front Cell Infect Microbiol. 2021; 11. https://doi.org/10.3389/ fcimb.2021.634981. DOI: https://doi.org/10.3389/fcimb.2021.634981

Chen F, Chen Z, Chen M, et al. Reduced stress-associated FKBP5 DNA methylation together with gut microbiota dysbiosis is linked with the progression of obese PCOS patients. NPJ Biofilms Microbiomes. 2021; 7(1):60. https://doi.org/10.1038/s41522-021-00231-6. DOI: https://doi.org/10.1038/s41522-021-00231-6

Zhu X, Li Y, Jiang Y, et al. Prediction of gut microbial community structure and function in Polycystic Ovary Syndrome with high low-density lipoprotein cholesterol. Front Cell Infect Microbiol. 2021; 11:665406. https://doi.org/10.3389/fcimb.2021.665406. DOI: https://doi.org/10.3389/fcimb.2021.665406

Yang YL, Zhou WW, Wu S, et al. Intestinal flora is a key factor in insulin resistance and contributes to the development of Polycystic Ovary Syndrome. Endocrinology. 2021; 162(10). https://doi.org/10.1210/endocr/bqab118. DOI: https://doi.org/10.1210/endocr/bqab118

Yu Z, Qin E, Cheng S, et al. Gut microbiome in PCOS associates to serum metabolomics: a cross-sectional study. Sci Rep. 2022; 12(1):22184. https://doi.org/10.1038/ s41598-022-25041-4.

Rizk MG, Thackray VG. Intersection of Polycystic Ovary Syndrome and the gut microbiome. Journal of the Endocrine Society. Endocrine Society. 2021; 5. https://doi.org/10.1210/jendso/bvaa177. DOI: https://doi.org/10.1210/jendso/bvaa177

Siddiqui R, Makhlouf Z, Alharbi AM, et al. The gut microbiome and female health. Biology (Basel). 2022; 11(11):1683. https://doi.org/10.3390/biology11111683. DOI: https://doi.org/10.3390/biology11111683

Kwa M, Plottel CS, Blaser MJ, Adams S. The Intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst. 2016; 108(8).

Patel J, Chaudhary H, Rajput K, et al. Assessment of gut microbial β-glucuronidase and β-glucosidase activity in women with Polycystic Ovary Syndrome. Sci Rep. 2023; 13(1):11967. https://doi.org/10.1038/s41598-023-39168-5. DOI: https://doi.org/10.1038/s41598-023-39168-5

Kaliannan K, Robertson RC, Murphy K, et al. Estrogenmediated gut microbiome alterations influence

sexual dimorphism in metabolic syndrome in mice. Microbiome. 2018; 6(1):205. https://doi.org/10.1186/s40168-018-0587-0. DOI: https://doi.org/10.1186/s40168-018-0587-0

Gulan T, Yeernuer T, Sui S, Mayinuer N. A rat model of maternal Polycystic Ovary Syndrome shows that exposure to androgens in utero results in dysbiosis of the intestinal microbiota and metabolic disorders of the newborn rat. Med Sci Monit. 2019; 25:9377–91. https://doi.org/10.12659/MSM.918600. DOI: https://doi.org/10.12659/MSM.918600

Sherman SB, Sarsour N, Salehi M, et al. Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes. 2018; 9(5):400–21. https://doi.org/10.1080/19490976.2018.1441664. DOI: https://doi.org/10.1080/19490976.2018.1441664

Barroso A, Santos-Marcos JA, Perdices-Lopez C, et al. Neonatal exposure to androgens dynamically alters gut microbiota architecture. J Endocrinol. 2020; 247(1):69–85. https://doi.org/10.1530/JOE-20-0277. DOI: https://doi.org/10.1530/JOE-20-0277

Colldén H, Landin A, Wallenius V, et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. American Journal of Physiology-Endocrinology and Metabolism. 2019; 317(6):E1182–92. https://doi.org/10.1152/ajpendo.00338.2019. DOI: https://doi.org/10.1152/ajpendo.00338.2019

Guo Y, Qi Y, Yang X, et al. Association between Polycystic Ovary Syndrome and gut microbiota. PLoS One. 2016; 11(4):e0153196. https://doi.org/10.1371/journal.pone.0153196. DOI: https://doi.org/10.1371/journal.pone.0153196

He QL, Wang HC, Ma YK, et al. Changes in the microbiota and their roles in patients with Type 2 Diabetes Mellitus. Curr Microbiol. 2023; 80(4):132. https://doi.org/10.1007/s00284-023-03219-x. DOI: https://doi.org/10.1007/s00284-023-03219-x

De Vadder F, Kovatcheva-Datchary P, Goncalves D, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014; 156(1– 2):84–96. https://doi.org/10.1016/j.cell.2013.12.016. DOI: https://doi.org/10.1016/j.cell.2013.12.016

Olaniyi KS, Bashir AAM, Areloegbe SE, et al. Short chain fatty acid, acetate restores ovarian function in experimentally induced PCOS rat model. PLoS One. 2022; 17(7):e0272124. https://doi.org/10.1371/journal.pone.0272124. DOI: https://doi.org/10.1371/journal.pone.0272124

Parada Venegas D, De la Fuente MK, Landskron G, et al. Short Chain Fatty Acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019; 10. https://doi.org/10.3389/fimmu.2019.01486. DOI: https://doi.org/10.3389/fimmu.2019.01486

Liu K, He X, Huang J, et al. Short-chain fatty acid-butyric acid ameliorates granulosa cells inflammation through regulating METTL3-mediated N6-methyladenosine modification of FOSL2 in Polycystic Ovarian Syndrome. Clin Epigenetics. 2023; 15(1):86. https://doi.org/10.1186/s13148-023-01487-9. DOI: https://doi.org/10.1186/s13148-023-01487-9

Neinast M, Murashige D, Arany Z. Branched-chain amino acids. Annu Rev Physiol. 2019; 81:139–64. https://doi.org/10.1146/annurev-physiol-020518-114455. DOI: https://doi.org/10.1146/annurev-physiol-020518-114455

Cummings NE, Williams EM, Kasza I, et al. Restoration of metabolic health by decreased consumption of branched-chain amino acids. J Physiol. 2018; 596(4):623– 45. https://doi.org/10.1113/JP275075. DOI: https://doi.org/10.1113/JP275075

Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9(4):311–26. https://doi.org/10.1016/j.cmet.2009.02.002. DOI: https://doi.org/10.1016/j.cmet.2009.02.002

Paczkowska K, Rachoń D, Berg A, et al. Specific alteration of branched-chain amino acid profile in Polycystic Ovary Syndrome. Biomedicines. 2023; 11(1). https://doi.org/10.3390/biomedicines11010108. DOI: https://doi.org/10.3390/biomedicines11010108

Ye Z, Zhang C, Wang S, et al. Amino acid signatures in relation to Polycystic Ovary Syndrome and increased risk of different metabolic disturbances. Reprod Biomed Online. 2022; 44(4):737–46. https://doi.org/10.1016/j.rbmo.2021.11.012. DOI: https://doi.org/10.1016/j.rbmo.2021.11.012

McGlone ER, Bloom SR. Bile acids and the metabolic syndrome. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine. 2019; 56(3):326–37. https://doi.org/10.1177/0004563218817798. DOI: https://doi.org/10.1177/0004563218817798

Guo X, Okpara ES, Hu W, et al. Interactive relationships between intestinal flora and bile acids. Int J Mol Sci. 2022; 23(15). https://doi.org/10.3390/ijms23158343. DOI: https://doi.org/10.3390/ijms23158343

Dudakov JA, Hanash AM, van den Brink MRM. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015; 33:747–85. https://doi.org/10.1146/annurev-immunol-032414-112123. DOI: https://doi.org/10.1146/annurev-immunol-032414-112123

Gao Z, Wang G, Ma X, et al. Troxerutin attenuates insulin resistance via pancreatic IL-22/JAK1/STAT3 signaling activation in dihydrotestosterone-induced Polycystic Ovary Syndrome rats. Am J Physiol Endocrinol Metab. 2022; 323(5):E405–17. https://doi.org/10.1152/ajpendo.00150.2022. DOI: https://doi.org/10.1152/ajpendo.00150.2022

Liu Y, Dai M. Trimethylamine n-oxide generated by the gut microbiota is associated with vascular inflammation: New insights into atherosclerosis. Mediators Inflamm. 2020; 2020:4634172. https://doi.org/10.1155/2020/4634172. DOI: https://doi.org/10.1155/2020/4634172

Gątarek P, Kałużna-Czaplińska J. Trimethylamine n-oxide (TMAO) in human health. EXCLI Journal. Leibniz Research Centre for Working Environment and Human Factors. 2021; 20:301–19.

Jiayu Huang, Jiaying Liu, Hanke Zhang, Yajie Li. Increased trimethylamine n-oxide contributes to metabolic dysfunction in a rat model of PCOS and decreases mitochondrial function. 2020. https://doi.org/10.21203/rs.3.rs-122457/v1. DOI: https://doi.org/10.21203/rs.3.rs-122457/v1

Huang J, Liu L, Chen C, Gao Y. PCOS without hyperandrogenism is associated with higher plasma Trimethylamine N-oxide levels. BMC Endocr Disord. 2020; 20(1):3. https://doi.org/10.1186/s12902-019-04869. DOI: https://doi.org/10.1186/s12902-019-0486-9

Suganya K, Koo BS. Gut–Brain Axis: Role of gut microbiota on neurological disorders and how probiotics/ prebiotics beneficially modulate microbial and immune pathways to improve brain functions. Int J Mol Sci. 2020; 21(20):7551. https://doi.org/10.3390/ijms21207551. DOI: https://doi.org/10.3390/ijms21207551

Psichas A, Sleeth ML, Murphy KG, et al. The short-chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes. 2015; 39(3):424–9. https://doi.org/10.1038/ijo.2014.153. DOI: https://doi.org/10.1038/ijo.2014.153

Lee YS, Park MS, Choung JS, et al. Glucagon-like peptide1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of diabetes. Diabetologia. 2012; 55(9):2456–68. https://doi.org/10.1007/s00125-012-2592-3. DOI: https://doi.org/10.1007/s00125-012-2592-3

LeValley SL, Tomaro-Duchesneau C, Britton RA. Degradation of the incretin hormone glucagon-like peptide-1 (glp-1) by Enterococcus faecalis metalloprotease GelE. mSphere. 2020; 5(1). https://doi.org/10.1128/ mSphere.00585-19. DOI: https://doi.org/10.1128/mSphere.00585-19

Grasset E, Puel A, Charpentier J, et al. A specific gut microbiota dysbiosis of Type 2 diabetic mice induces glp-1 resistance through an enteric no-dependent and gut-brain axis mechanism. Cell Metab. 2017; 26(1):278. https://doi.org/10.1016/j.cmet.2017.06.003. DOI: https://doi.org/10.1016/j.cmet.2017.06.003

Papaetis GS, Kyriacou A. GLP-1 receptor agonists, Polycystic Ovary Syndrome and reproductive dysfunction: Current research and future horizons. Adv Clin Exp Med. 2022; 31(11):1265–74. https://doi.org/10.17219/acem/151695. DOI: https://doi.org/10.17219/acem/151695

Giampaolino P, Foreste V, Di Filippo C, et al. Microbiome and PCOS: State-of-Art and Future Aspects. Int J Mol Sci. 2021; 22(4). https://doi.org/10.3390/ijms22042048. DOI: https://doi.org/10.3390/ijms22042048

Han Y, Wang B, Gao H, et al. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J Inflamm Res. 2022; 15:6213–30. https://doi.org/10.2147/JIR.S384949. DOI: https://doi.org/10.2147/JIR.S384949

Otaru N, Ye K, Mujezinovic D, et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance. Front Microbiol. 2021; 12:656895. https://doi.org/10.3389/ fmicb.2021.656895. DOI: https://doi.org/10.3389/fmicb.2021.656895

Silva MSB, Desroziers E, Hessler S, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: Implications for Polycystic Ovary Syndrome.

EBioMedicine. 2019; 44:582–96. https://doi.org/10.1016/j.ebiom.2019.05.065. DOI: https://doi.org/10.1016/j.ebiom.2019.05.065

Kawwass JF, Sanders KM, Loucks TL, et al. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with Polycystic Ovary Syndrome. Hum Reprod. 2017; 32(7):1450–6. https://doi. DOI: https://doi.org/10.1093/humrep/dex086

org/10.1093/humrep/dex086.

Yu Z, Qin E, Cheng S, et al. Gut microbiome in PCOS associates to serum metabolomics: a cross-sectional study. Sci Rep. 2022; 12(1):22184. https://doi.org/10.1038/s41598-022-25041-4. DOI: https://doi.org/10.1038/s41598-022-25041-4

Emanuel RHK, Roberts J, Docherty PD, et al. A review of the hormones involved in the endocrine dysfunctions of Polycystic Ovary Syndrome and their interactions. Front Endocrinol (Lausanne). 2022; 13:1017468. https://doi.org/10.3389/fendo.2022.1017468. DOI: https://doi.org/10.3389/fendo.2022.1017468

O’Toole PW, Cooney JC. Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis. 2008; 2008:1–9. https://doi.org/10.1155/2008/175285. DOI: https://doi.org/10.1155/2008/175285

Ahmadi S, Jamilian M, Karamali M, et al. Probiotic supplementation and the effects on weight loss, glycaemia and lipid profiles in women with Polycystic Ovary Syndrome: a randomized, double-blind, placebo-controlled trial. Hum Fertil. 2017; 20(4):254–61. https://doi.org/10.1080/14647273.2017.1283446. DOI: https://doi.org/10.1080/14647273.2017.1283446

Rashad NM, El-Shal AS, Amin AI, et al. Effects of probiotics supplementation on macrophage migration inhibitory factor and clinical laboratory feature of Polycystic Ovary Syndrome. J Funct Foods. 2017; 36:317–24. https://doi.org/10.1016/j.jff.2017.06.029. DOI: https://doi.org/10.1016/j.jff.2017.06.029

Karamali M, Eghbalpour S, Rajabi S, et al. Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with Polycystic Ovary Syndrome: A randomized, double-blind, placebo-controlled trial. Arch Iran Med. 2018; 21(1):1–7. https://doi.org/10.1007/s12011-017-1085-0. DOI: https://doi.org/10.1007/s12011-017-1085-0

Shoaei T, Heidari-Beni M, Tehrani HG, et al. Effects of probiotic supplementation on pancreatic β-cell function and c-reactive protein in women with Polycystic Ovary Syndrome: A randomized double-blind placebo-controlled clinical trial. Int J Prev Med. 2015; 6:27. https://doi.org/10.4103/2008-7802.153866. DOI: https://doi.org/10.4103/2008-7802.153866

Ghanei N, Rezaei N, Amiri GA, et al. The probiotic supplementation reduced inflammation in Polycystic Ovary Syndrome: A randomized, double-blind, placebo-controlled trial. J Funct Foods. 2018; 42:306–11. https://doi.org/10.1016/j.jff.2017.12.047. DOI: https://doi.org/10.1016/j.jff.2017.12.047

Ostadmohammadi V, Jamilian M, Bahmani F, et al. Vitamin D and probiotic co-supplementation affect

mental health, hormonal, inflammatory, and oxidative stress parameters in women with Polycystic Ovary

Syndrome. J Ovarian Res. 2019; 12(1):5. https://doi.org/10.1186/s13048-019-0480-x. DOI: https://doi.org/10.1186/s13048-019-0480-x

Jamilian M, Mansury S, Bahmani F, et al. The effects of probiotic and selenium co-supplementation on

parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with Polycystic Ovary Syndrome. J Ovarian Res. 2018; 11(1):80. https://doi.org/10.1186/s13048-018-0457-1. DOI: https://doi.org/10.1186/s13048-018-0457-1

Zhang J, Sun Z, Jiang S, et al. Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in Polycystic Ovary Syndrome patients through the gutbrain axis. mSystems. 2019; 4(2). https://doi.org/10.1128/mSystems.00017-19. DOI: https://doi.org/10.1128/mSystems.00017-19

Parnell JA, Reimer RA. Prebiotic fiber modulation of the gut microbiota improves risk factors for obesity and the metabolic syndrome. Gut Microbes. 2012; 3(1):29–34. https://doi.org/10.4161/gmic.19246. DOI: https://doi.org/10.4161/gmic.19246

Miao C, Guo Q, Fang X, et al. Effects of probiotic and synbiotic supplementation on insulin resistance in women with Polycystic Ovary Syndrome: A metaanalysis. J Int Med Res. 2021; 49(7):3000605211031758. https://doi.org/10.1177/03000605211031758. DOI: https://doi.org/10.1177/03000605211031758

Li Y, Tan Y, Xia G, Shuai J. Effects of probiotics, prebiotics, and synbiotics On Polycystic Ovary Syndrome: A systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2023; 63(4):522–38. https://doi.org/10.1080/10408398.2021.1951155. DOI: https://doi.org/10.1080/10408398.2021.1951155

Cozzolino M, Vitagliano A, Pellegrini L, et al. Therapy with probiotics and synbiotics for Polycystic Ovarian Syndrome: A systematic review and meta-analysis. Eur J Nutr. 2020; 59(7):2841–56. https://doi.org/10.1007/s00394-020-02233-0. DOI: https://doi.org/10.1007/s00394-020-02233-0

Heshmati J, Farsi F, Yosaee S, et al. The effects of probiotics or synbiotics supplementation in women with Polycystic Ovarian Syndrome: A systematic review and meta-analysis of randomized clinical trials. Probiotics Antimicrob Proteins. 2019; 11(4):1236–47. https://doi.org/10.1007/s12602-018-9493-9. DOI: https://doi.org/10.1007/s12602-018-9493-9

Liao D, Zhong C, Li C, et al. Meta-analysis of the effects of probiotic supplementation on glycemia, lipidic profiles, weight loss, and C-reactive protein in women with Polycystic Ovarian Syndrome. Minerva Med. 2018; 109(6):479–87. https://doi.org/10.23736/S00264806.18.05728-2. DOI: https://doi.org/10.23736/S0026-4806.18.05728-2

Quaranta G, Sanguinetti M, Masucci L. Fecal Microbiota Transplantation: A potential tool for the treatment of human female reproductive tract diseases. Front Immunol. 2019; 10:2653. https://doi.org/10.3389/ fimmu.2019.02653. DOI: https://doi.org/10.3389/fimmu.2019.02653

Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012; 143(4):913-6.e7. https://doi.org/10.1053/j.gastro.2012.06.031. DOI: https://doi.org/10.1053/j.gastro.2012.06.031

Proença IM, Allegretti JR, Bernardo WM, et al. Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials. Nutr Res. 2020; 83:1–14. https://doi.org/10.1016/j.nutres.2020.06.018. DOI: https://doi.org/10.1016/j.nutres.2020.06.018