An Investigation on Bone Mineral Density in Hyperprolactinemia

Jump To References Section

Authors

  • Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi - 110029 ,IN
  • Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi - 110029 ,IN
  • Department of Reproductive Biology, All India Institute of Medical Sciences, New Delhi - 110029 ,IN

DOI:

https://doi.org/10.18311/jer/2020/27844

Keywords:

Body Mass Index, Bone Mineral Density, Dual-Energy X-ray Absorptiometry, Hyperprolactinemia, Macroprolactinemia
Hyperprolactinemia

Abstract

Hyperprolactinemia patients have been reported to have low Bone Mineral Density (BMD). This study aimed to compare bone mineral density and associated factors in hyperprolactinemia. A total of 35 hyperprolactinemia patients (>100ng/ mL serum prolactin levels) and 10 controls participated in study. Hyperprolactinemia cases were classified into macroprolactinemia and true hyperprolactinemia as determined by Poly-Ethylene Glycol precipitation. Serum levels of Prolactin, Estradiol, Calcium, Phosphate or Alkaline Phosphatase were measured. BMD was measured at lumbar vertebrae, left femur, and left forearm by dual energy x-ray absorptiometry (DXA) scan. The prevalence of osteopenia/osteoporosis was 50% in macroprolactinemia, 70% in true hyperprolactinemia and 60% in controls (statistical differences were insignificant; p = 0.517). Pearson correlation analysis did not find any significant correlation of Prolactin, Estradiol, Calcium, Phosphate or Alkaline Phosphatase with T score or Z score at lumbar spine, femur or forearm (wrist) region in hyperprolactinemia patients and controls. The only significant correlations were found between body mass index (BMI) and prolactin levels (r = 0.473, p = 0.003); and between BMI and total femur T score (r = 0.360, p = 0.015) and Z score (r = 0.362, p = 0.015). Mean BMI was also significantly high (p = 0.029) in hyperprolactinemia patients with normal DXA (28.7±5.3 kg/m2) compared to those with Osteopenia/Osteoporosis (24.7±4.8 kg/m2). There was no significant difference in incidence of osteopenia/ osteoporosis between macroprolactinemia and true hyperprolactinemia patients. The only significant correlation of BMD was found with BMI suggesting high BMI to be a protective factor against osteoporosis in hyperprolactinemia patients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2020-12-30

How to Cite

Kaur Kalsi, A., Jain, M., & Halder, A. (2020). An Investigation on Bone Mineral Density in Hyperprolactinemia. Journal of Endocrinology and Reproduction, 24(2), 105–119. https://doi.org/10.18311/jer/2020/27844

Issue

Section

Original Research

 

References

Adra A, El Zibdeh MY, Abdul Malek AMM, Hamrahian AH, Abdelhamid AMS, Colao A, Anastasiades E, Ahmed EMAF, Ezzeddine JI, El Sattar MIA, Dabit ST, Ghanameh W, Nedjatian N, El-Kak F. Differential diagnosis and management of abnormal uterine bleeding due to hyperprolactinemia. Middle East Fertil Soc J. 2016; 21(3):137-147. https://doi.org/10.1016/j.mefs.2016.02.001.

Kalsi AK, Halder A, Jain M, Chaturvedi PK, Sharma JB. Prevalence and reproductive manifestations of macroprolactinemia. Endocrine. 2019; 63(2):332-340. https:// doi.org/10.1007/s12020-018-1770-6. PMid:30269265.

Shimatsu A, Hattori N. Macroprolactinemia: Diagnostic, clinical, and pathogenic significance. Clin Dev Immunol. 2012; 2012:167132. https://doi.org/10.1155/2012/167132. PMid:23304187 PMCid:PMC3529459.

Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: Structure, function, and regulation of secretion. Physiol Rev. 2000; 80(4):1523-1631. https://doi.org/10.1152/ physrev.2000.80.4.1523. PMid:11015620.

Simon JA, Mack CJ. Prevention and management of osteoporosis. Clin Cornerstone. Suppl 2003; 2:S5-12. https://doi.org/10.1016/S1098-3597(03)90042-1.

WHO Scientific group on the assessment of osteoporosis at primary health care level. World Health Organization, Summary Meeting Report. Brussels, Belgium; 2004. p. 5-7. https://www.who.int/chp/topics/Osteoporosis.pdf.

Bolanowski M, Halupczok J, Jawiarczyk-Przybyłowska A. Pituitary disorders and osteoporosis. Int J Endocrinol. 2015; 2015:206853. https://doi.org/10.1155/2015/206853. PMid:25873948 PMCid:PMC4383139.

Di Somma C, Colao A, Di Sarno A, Klain M, Landi ML, Facciolli G, Pivonello R, Panza N, Salvatore M, Lombardi G. Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J Clin Endocrinol Metab. 1998; 83(3):807-813. https://doi. org/10.1210/jcem.83.3.4674. PMid:9506732.

Zhao Y, Gan X, Luo P, He Q, Guo Q, Zhang L, Zhang X, Zhang X, Fei Z. The risk of osteopenia in premenopausal women with various sellar tumors. Gynecol Endocrinol. 2012; 28(12):945-948. https://doi.org/10.3109/09513590.2 012.683080. PMid:22553947.

Mazziotti G, Mancini T, Mormando M, De Menis E, Bianchi A, Doga M, Porcelli T, Vescovi PP, De Marinis L, Giustina A. High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary. 2011; 14(4):299-306. https://doi.org/10.1007/ s11102-011-0293-4. PMid:21301967.

Mazziotti G, Porcelli T, Mormando M, De Menis E, Bianchi A, Mejia C, Mancini T, De Marinis L, Giustina A. Vertebral fractures in males with prolactinoma. Endocrine. 2011; 39(3):288-293. https://doi.org/10.1007/s12020-011-9462- 5. PMid:21479837.

Meaney AM, Smith S, Howes OD, O'Brien M, Murray RM, O'Keane V. Effects of long-term prolactin-raising antipsychotic medication on bone mineral density in patients with schizophrenia. Br J Psychiatry. 2004; 184:503-508. https://doi.org/10.1192/bjp.184.6.503. PMid:15172944.

Vestergaard P, Jí¸rgensen JO, Hagen C, Hoeck HC, Laurberg P, Rejnmark L, Brixen K, Weeke J, Andersen M, Conceicao FL, Nielsen TL, Mosekilde L. Fracture risk is increased in patients with GH deficiency or untreated prolactinomas--a case-control study. Clin Endocrinol (Oxf). 2002; 56(2):159- 167. https://doi.org/10.1046/j.0300-0664.2001.01464.x. PMid:11874406.

Magaš S, ć†aćić M, Magaš ZS, Kruljac I. Multiple vertebral fractures in an elderly male with macroprolactinoma. Endocr Oncol Metab. 2016; 2:226-230. https://doi. org/10.21040/eom/2016.2.3.7.

Seriwatanachai D, Krishnamra N, van Leeuwen JP. Evidence for direct effects of prolactin on human osteoblasts: Inhibition of cell growth and mineralization. J Cell Biochem. 2009; 107(4):677-685. https://doi.org/10.1002/ jcb.22161. PMid:19365811.

Yoon V, Maalouf NM, Sakhaee K. The effects of smoking on bone metabolism. Osteoporos Int. 2012; 23(8):2081- 2092. https://doi.org/10.1007/s00198-012-1940-y. PMid: 22349964.

Sampson HW. Alcohol's harmful effects on bone. Alcohol Health Res World. 1998; 22(3):190-194. https://doi. org/10.1111/j.1530-0277.1998.tb05912.x.

Khatake PD, Jadhav SS, Afroz S. Relation between Serum Calcium Level, Bone Mineral Density and Blood Pressure in Postmenopausal Women. Int J Rec TrSci Tech. 2013; 7:86-88.

Johnell O. WHO scientific group on the assessment of osteoporosis at primary health care level, in Proceedings of the Summary Meeting Report. World Health Organization, Brussels, Belgium; 2004.

Chen CY, Lane HY, Lin CH. Effects of Antipsychotics on Bone Mineral Density in Patients with Schizophrenia: Gender Differences. Clin Psychopharmacol Neurosci. 2016; 14(3):238-249. https://doi.org/10.9758/cpn.2016.14.3.238. PMid:27489377 PMCid:PMC4977815.

Clément-Lacroix P, Ormandy C, Lepescheux L, Ammann P, Damotte D, Goffin V, Bouchard B, Amling M, Gaillard- Kelly M, Binart N, Baron R, Kelly PA. Osteoblasts are a new target for prolactin: Analysis of bone formation in prolactin receptor knockout mice. Endocrinology. 1999; 140(1):96-105. https://doi.org/10.1210/endo.140.1.6436. PMid:9886812.

Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappa B ligand/ osteoprotegerin ratio. Bone. 2008; 42(3):535-546. https:// doi.org/10.1016/j.bone.2007.11.008. PMid:18166509.

De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A. Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int. 2005; 16(11):1330-1338. https://doi.org/10.1007/s00198- 005-1863-y. PMid:15928804.

Haffner SM, Bauer RL. The association of obesity and glucose and insulin concentrations with bone density in premenopausal and postmenopausal women. Metabolism. 1993; 42(6):735-738. https://doi.org/10.1016/0026- 0495(93)90241-F.

Jeddi M, Dabbaghmanesh MH, Ranjbar Omrani G, Ayatollahi SM, Bagheri Z, Bakhshayeshkaram M. Relative Importance of Lean and Fat Mass on Bone Mineral Density in Iranian Children and Adolescents. Int J Endocrinol Metab. 2015; 13(3):e25542. https://doi.org/10.5812/ ijem.25542v2.

Roelfsema F, Pijl H, Keenan DM, Veldhuis JD. Prolactin secretion in healthy adults is determined by gender, age and body mass index. PLoS One. 2012; 7(2):e31305. https:// doi.org/10.1371/journal.pone.0031305. PMid:22363612 PMCid:PMC3281966.

Khatoon F, Badawy A-E (2013) Association between BMI and Prolactin Levels in Male Patients. Sci J Med Clin Trials. 2012; 2013: 259:6.

Michel BA, Bloch DA, Fries JF. Weight-bearing exercise, overexercise, and lumbar bone density over age 50 years. Arch Intern Med. 1989; 149(10):2325-2329. https://doi.org/10.1001/archinte.1989.00390100127027. PMid:2802897.

Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women. Calcif Tissue Int. 1998; 63(6):456-458. https://doi. org/10.1007/s002239900557. PMid:9817937.

Albala C, Yáñez M, Devoto E, Sostin C, Zeballos L, Santos JL. Obesity as a protective factor for postmenopausal osteoporosis. Int J Obes Relat Metab Disord. 1996; 20(11):1027-1032.

Cleland WH, Mendelson CR, Simpson ER. Effects of aging and obesity on aromatase activity of human adipose cells. J Clin Endocrinol Metab. 1985; 60(1):174-177. https://doi. org/10.1210/jcem-60-1-174. PMid:3964790.

Ricci TA, Heymsfield SB, Pierson RN Jr, Stahl T, Chowdhury HA, Shapses SA. Moderate energy restriction increases bone resorption in obese postmenopausal women. Am J Clin Nutr. 2001; 73(2):347-352. https://doi.org/10.1093/ ajcn/73.2.347. PMid:11157334.

Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, Ogawa Y, Liu X, Ware SM, Craigen WJ, Robert JJ, Vinson C, Nakao K, Capeau J, Karsenty G. Serum leptin level is a regulator of bone mass. Proc Natl Acad Sci U S A. 2004; 101(9):3258-3263. https://doi.org/10.1073/ pnas.0308744101. PMid:14978271 PMCid:PMC365777.

Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000; 100(2):197-207. https://doi.org/10.1016/S0092-8674(00)81558-5.

Cohen A, Dempster DW, Recker RR, Lappe JM, Zhou H, Zwahlen A, Müller R, Zhao B, Guo X, Lang T, Saeed I, Liu XS, Guo XE, Cremers S, Rosen CJ, Stein EM, Nickolas TL, McMahon DJ, Young P, Shane E. Abdominal fat is associated with lower bone formation and inferior bone quality in healthy premenopausal women: A transiliac bone biopsy study. J Clin Endocrinol Metab. 2013; 98(6):2562-2572. https://doi.org/10.1210/jc.2013-1047. PMid:23515452 PMCid:PMC3667251.

Ishii S, Cauley JA, Greendale GA, Nielsen C, Karvonen- Gutierrez C, Ruppert K, Karlamangla AS. Pleiotropic effects of obesity on fracture risk: the Study of Women's Health Across the Nation. J Bone Miner Res. 2014; 29(12):2561- 2570. https://doi.org/10.1002/jbmr.2303. PMid:24986773 PMCid:PMC4403760.

Palermo A, Tuccinardi D, Defeudis G, Watanabe M, D'Onofrio L, Lauria Pantano A, Napoli N, Pozzilli P, Manfrini S. BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. Int J Environ Res Public Health. 2016; 13(6):544. https://doi.org/10.3390/ijerph13060544. PMid:27240395 PMCid:PMC4924001.

Ng AC, Melton LJ 3rd, Atkinson EJ, Achenbach SJ, Holets MF, Peterson JM, Khosla S, Drake MT. Relationship of adiposity to bone volumetric density and microstructure in men and women across the adult lifespan. Bone. 2013 Jul; 55(1):119-125. https://doi.org/10.1016/j.bone.2013.02.006. PMid:23428401 PMCid:PMC3650114.

Hamdi RA. Evaluation of Serum Osteocalcin Level in Iraqi Postmenopausal Women with Primary Osteoporosis. J Fac Med. 2013; 55:166-169.

Ali NK. Estimation of Some Mineral (Calcium, Phosphorous, Vitamin 25 (OH) D and Alkaline Phosphatase) in Osteoporosis Patients in Kirkuk City. Osteopor Phys Act. 2018; 6:215. https://doi.org/10.4172/2329-9509.1000215.

Jayaram N, Bijoor AR, Rajagopalan N, Venkatesh T. The value of serum and urinary n-Telopeptide in the diagnosis of osteoporosis. Indian J Orthopaed. 2002; 36:9.

Sumanthy S, Shanthi G. A Study of Serum Prolactin in Reduced Bone mineral Density. J Indian Acad Geriatr. 2016; 12:10-13.

Most read articles by the same author(s)