Menthol Attenuates Cholinergic Dysfunction and Neurotransmitter Imbalance in Experimental Diabetes

Jump To References Section

Authors

  • Department of Biochemistry, University of Kerala, Thiruvananthapuram – 695034, Kerala ,IN
  • Department of Biochemistry, University of Kerala, Thiruvananthapuram – 695034, Kerala ,IN

DOI:

https://doi.org/10.18311/jer/2023/32989

Keywords:

Cholinergic Dysfunction, Diabetic Encephalopathy (DE), Menthol, Neurotransmitters, Streptozotocin

Abstract

One of the most predominant enduring consequences of Diabetes Mellitus (DM) is Diabetic Encephalopathy (DE), which has neither a reliable treatment nor an effective preventive strategy. Cognitive dysfunction is the primary problem allied with DE. The current inquiry aims to determine the potency of menthol in reducing the risk of brain complications induced by Streptozotocin (STZ) in diabetic rats. A single STZ intraperitoneal injection (40 mg/kg body weight) was employed to induce DM in Sprague-Dawley male rats and animals were held without treatment for 30 days to develop DE. The Morris water maze test, followed by the supplementation of menthol and metformin for 60 days at 50 and 100 mg/kg body weight dosages, verified the cognitive deficit in diabetic rats. After 60 days of therapy, rats were sacrificed to obtain blood and brain tissues for biochemical investigation. Oral delivery of menthol enhanced cognitive function in DE rats. Furthermore, menthol markedly reduced fasting blood sugar, glycosylated Hemoglobin (HbA1c), and elevated plasma insulin levels. In the brain, menthol increases neurotransmitter levels and choline acetyltransferase activity while decreasing AChE activity. Menthol also downregulated the expressions of monoamine oxidase A and B. Thus, the study indicates that menthol was effective in attenuating the neurodegenerative alterations in DE rats. It had a therapeutic potential and could be effectively utilized as a dietary supplement for regulating complications associated with encephalopathy.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

S. Mini, Department of Biochemistry, University of Kerala, Thiruvananthapuram – 695034, Kerala

Department of Biochemistry, University of Kerala with NAAC A++ Grade.

Downloads

Published

2023-08-17

How to Cite

Soumya, S., & Mini, S. (2023). Menthol Attenuates Cholinergic Dysfunction and Neurotransmitter Imbalance in Experimental Diabetes. Journal of Endocrinology and Reproduction, 27(2), 119–129. https://doi.org/10.18311/jer/2023/32989

Issue

Section

Original Research

 

References

Dong M, Ren M, Li C, Zhang X, Yang C, Zhao L, et al. Analysis of metabolic alterations related to pathogenic process of diabetic encephalopathy rats. Front Cell Neurosci. 2019; 12:1-17. https://doi.org/10.3389/ fncel.2018.00527 DOI: https://doi.org/10.3389/fncel.2018.00527

Han W-N, Hölscher C, Yuan L, Yang W, Wang X-H, Wu M-N, et al. Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol Aging. 2013; 4(2):576-88. https://doi.org/10.1016/j.neurobiolaging.2012.04.009 DOI: https://doi.org/10.1016/j.neurobiolaging.2012.04.009

Mesulam M-M, Guillozet A, Shaw P, et al. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience. 2002; 110(4):627-39. https://doi.org/10.1016/S0306- 4522(01)00613-3 DOI: https://doi.org/10.1016/S0306-4522(01)00613-3

Hegazy AM, Azeem AA, Shahy EM, El-Sayed EM. Comparative study of cholinergic and oxidative stress biomarkers in brains of diabetic and hypercholesterolemic rats. Hum Exp Toxicol. 2016; 35(3):251-8. https://doi. org/10.1177/0960327115583361 DOI: https://doi.org/10.1177/0960327115583361

Tiwari V, Kuhad A, Chopra K. Suppression of neuroinflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav Brain Res. 2009; 203(2):296-303. https:// doi.org/10.1016/j.bbr.2009.05.016 DOI: https://doi.org/10.1016/j.bbr.2009.05.016

Prakash A, Kalra J, Mani V, Ramasamy K, Majeed ABA. Pharmacological approaches for Alzheimer’s disease: Neurotransmitter as drug targets. Expert Rev Neurother. 2015; 15(1):53-71. https://doi.org/10.1586/14737175.20 15.988709 DOI: https://doi.org/10.1586/14737175.2015.988709

Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Franke TF, Cain P, et al. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun. 2013; 1:34. https://doi.org/10.1186/2051- 5960-1-34 DOI: https://doi.org/10.1186/2051-5960-1-34

Aksoz BE, Aksoz E. Vital role of monoamine oxidases and cholinesterases in central nervous system drug research: A sharp dissection of the pathophysiology. Comb Chem High Throughput Screen. 2020; 23(9):877- 86. https://doi.org/10.2174/13862073236662002201151 54 DOI: https://doi.org/10.2174/1386207323666200220115154

Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. Eur J Med Chem. 2020; 206. https://doi.org/10.1016/j.ejmech.2020.112787 DOI: https://doi.org/10.1016/j.ejmech.2020.112787

Hajlaoui H, Snoussi M, Jannet HBEN, Mighri Z, Bakhrouf A. Comparison of chemical composition and antimicrobial activities of Mentha longifolia L. ssp. longifolia essential oil from two Tunisian localities (Gabes and Sidi Bouzid ). Ann Microbiol. 2008; 58(3):513-20. https://doi.org/10.1007/BF03175551 DOI: https://doi.org/10.1007/BF03175551

Kim S, Lee S, Piccolo SR, Karuppayil SM. Menthol induces cell-cycle arrest in PC-3 cells by down-regulating G2/M genes, including polo-like kinase 1. Biochem Biophys Res Commun. 2012; 422(3):436-41. https://doi. org/10.1016/j.bbrc.2012.05.010 DOI: https://doi.org/10.1016/j.bbrc.2012.05.010

Raut JS, Shinde RB, Chauhan NM, Karuppayil SM. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans. Biofouling. 2013; 29(1):87-96. https://doi.org/10.1080/0 8927014.2012.749398 DOI: https://doi.org/10.1080/08927014.2012.749398

Baylac S, Racine P. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. Int J Aromather. 2003; 13(2-3):138-42. https://doi. org/10.1016/S0962-4562(03)00083-3 DOI: https://doi.org/10.1016/S0962-4562(03)00083-3

Muruganathan U, Srinivasan S, Vinothkumar V. Antidiabetogenic efficiency of menthol, improves glucose homeostasis and attenuates pancreatic β-cell apoptosis in streptozotocin-nicotinamide induced experimental rats through ameliorating glucose metabolic enzymes. Biomed Pharmacother. 2017; 92:229-39. https://doi. org/10.1016/j.biopha.2017.05.068 DOI: https://doi.org/10.1016/j.biopha.2017.05.068

Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurol Meth. 1984; 11:47-60. https://doi.org/10.1016/0165- 0270(84)90007-4 DOI: https://doi.org/10.1016/0165-0270(84)90007-4

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7(2):88-95. https://doi.org/10.1016/0006- 2952(61)90145-9 DOI: https://doi.org/10.1016/0006-2952(61)90145-9

Liu J, Feng L, Zhang M, Ma D-y, Wang S-y, Gu J, et al. Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. J Ethnopharmacol. 2013; 150(1):371-81. https://doi.org/10.1016/j. jep.2013.09.003 DOI: https://doi.org/10.1016/j.jep.2013.09.003

Weil-Malherbe H, Bigelow LB. The fluorometric estimation of epinephrine and norepinephrine: An improved modification of the trihydroxyindole method. Anal Biochem. 1968; 22(2):321-34. https://doi. org/10.1016/0003-2697(68)90322-9 DOI: https://doi.org/10.1016/0003-2697(68)90322-9

Atack CV. The determination of dopamine by a modification of the dihydroxyindole fluorimetric assay. Br J Pharmacol. 1973; 48(4):699-714. https://doi.org/10.1111/j.1476-5381.1973.tb08259.x DOI: https://doi.org/10.1111/j.1476-5381.1973.tb08259.x

Curzon G, Green AR. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol. 1970; 39(3):653-5. https://doi.org/10.1111/j.1476-5381.1970. tb10373.x DOI: https://doi.org/10.1111/j.1476-5381.1970.tb10373.x

Lowry H, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951; 193(1):265-75. https://doi.org/10.1016/S0021-9258(19)52451-6 DOI: https://doi.org/10.1016/S0021-9258(19)52451-6

Skrypina NA, Timofeeva A V, Khaspekov GL, Savochkina LP, Beabealashvilli RS. Total RNA suitable for molecular biology analysis. J Biotechnol. 2003; 105(1-2):1-9. https://doi.org/10.1016/S0168-1656(03)00140-8 DOI: https://doi.org/10.1016/S0168-1656(03)00140-8

De Silva NMG, Borges MC, Hingorani AD, Engmann J, Shah T, Zhang X, et al. Liver function and risk of type 2 diabetes: Bidirectional mendelian randomization study. Diabetes. 2019; 68(8):1681-91. https://doi.org/10.2337/ db18-1048 DOI: https://doi.org/10.2337/db18-1048

Cheng L-Z, Li W, Chen Y-X, Lin Y-J, Miao Y. Autophagy and diabetic encephalopathy: Mechanistic insights and potential therapeutic implications. Aging Dis. 2022; 13(2):447-57. https://doi.org/10.14336/AD.2021.0823 DOI: https://doi.org/10.14336/AD.2021.0823

Othman MZ, Hassan Z, Che Has AT. Morris water maze: A versatile and pertinent tool for assessing spatial learning and memory. Exp Anim. 2022; 71(3):264-80. https://doi.org/10.1538/expanim.21-0120 DOI: https://doi.org/10.1538/expanim.21-0120

Gao M, Kang Y, Zhang L, Li H, Qu C, Luan X, et al. Troxerutin attenuates cognitive decline in the hippocampus of male diabetic rats by inhibiting NADPH oxidase and activating the Nrf2/ARE signaling pathway. Int J Mol Med. 2020; 46(3):1239-48. https://doi. org/10.3892/ijmm.2020.4653 DOI: https://doi.org/10.3892/ijmm.2020.4653

Liu X, Liu M, Mo Y, Peng H, Gong J, Li Z, et al. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Iran J Basic Med Sci. 2016; 19(4):417-22. DOI: https://doi.org/10.1007/s11011-015-9779-5

Majmudar F, Bhadania M, Joshi H. Menthol causes reduction of Scopolamine induced Glutamatergic neurotoxicity and cognitive deficits. Asian J Pharm Pharmacol. 2018; 4(3):256-64. https://doi.org/10.31024/ ajpp.2018.4.3.3 DOI: https://doi.org/10.31024/ajpp.2018.4.3.3

Shali KS, Soumya NPP, Mondal S, Mini S. Hepatoprotective effect of morin via regulating the oxidative stress and carbohydrate meabolism in STZ induced diabetic rats. Bioact Compd Heal Dis. 2022; 5:53. https://doi.org/10.31989/bchd.v5i3.893 DOI: https://doi.org/10.31989/bchd.v5i3.893

Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018; 141(7):1917-33. https://doi. org/10.1093/brain/awy132 DOI: https://doi.org/10.1093/brain/awy132

Rodrigo R, Cauli O, Gomez-Pinedo U, et al. Hyperammonemia induces neuroinflammation that contributes to cognitive impairment in rats with hepatic encephalopathy. Gastroenterology. 2010; 139(2):675-84. https://doi.org/10.1053/j.gastro.2010.03.040 DOI: https://doi.org/10.1053/j.gastro.2010.03.040

Mao X-Y, Cao D-F, Li X, Yin J-Y, Wang Z-B, Zhang Y, et al. Huperzine A ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Int J Mol Sci. 2014; 15(5):7667-83. https://doi.org/10.3390/ijms15057667 DOI: https://doi.org/10.3390/ijms15057667

Sandireddy R, Yerra VG, Areti A, Komirishetty P, Kumar A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int J Endocrinol. 2014; 2014. https://doi. org/10.1155/2014/674987 DOI: https://doi.org/10.1155/2014/674987

Morán MA, Mufson EJ, Gómez-Ramos P. Colocalization of cholinesterases with beta amyloid protein in aged and Alzheimer’s brains. Acta Neuropathol. 1993; 85(4):362- 9. https://doi.org/10.1007/BF00334445 DOI: https://doi.org/10.1007/BF00334445

Teleanu RI, Niculescu AG, Roza E, Vladâcenco O, Grumezescu AM, Teleanu DM. Neurotransmitters-key factors in neurological and neurodegenerative disorders of the central nervous system. Int J Mol Sci. 2022; 23(11). https://doi.org/10.3390/ijms23115954 DOI: https://doi.org/10.3390/ijms23115954

Swamy BK, Shiprath K, Rakesh G, Ratnam KV, Manjunatha H, Janardan S, et al. Simultaneous detection of dopamine, tyrosine and ascorbic acid using NiO/ graphene modified graphite electrode. Biointerface Res Appl Chem. 2020; 10(3):5599-609. https://doi.org/10.33263/BRIAC103.599609 DOI: https://doi.org/10.33263/BRIAC103.599609

Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018; 1693:128-33. https://doi. org/10.1016/j.brainres.2018.03.015 DOI: https://doi.org/10.1016/j.brainres.2018.03.015

Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in electrochemical sensors for neurotransmitter detection: Towards measuring neurotransmitters as chemical diagnostics for brain disorders. Anal Methods. 2019; 11(21):2738-55. https://doi.org/10.1039/C9AY00055K DOI: https://doi.org/10.1039/C9AY00055K

Al-Sabri MH, Nikpour M, Clemensson LE, Attwood MM, Williams MJ, Rask-Anderson M, et al. The regulatory role of AP-2β in monoaminergic neurotransmitter systems: Insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci. 2022; 12(1):151. https://doi.org/10.1186/s13578-022-00891-7 DOI: https://doi.org/10.1186/s13578-022-00891-7

Ezzeldin E, Souror WAH, El-Nahhas T, Soudi ANMM, Shahat AA. Biochemical and neurotransmitters changes associated with tramadol in streptozotocin-induced diabetes in rats. Biomed Res Int. 2014; 2014. https://doi.org/10.1155/2014/238780 DOI: https://doi.org/10.1155/2014/238780

Wang W, Jiang Y, Cai E, Li B, Zhao Y, Zhu H, et al. L-menthol exhibits antidepressive-like effects mediated by the modification of 5-HTergic, GABAergic and DAergic systems. Cogn Neurodyn. 2019; 13(2):191-200. https://doi.org/10.1007/s11571-018-9513-1 DOI: https://doi.org/10.1007/s11571-018-9513-1

Duncan J, Johnson S, Ou X-M. Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov Ther. 2012; 6(3):112-22. https://doi.org/10.5582/ddt.2012.v6.3.112 DOI: https://doi.org/10.5582/ddt.2012.v6.3.112

Hureau C, Sasaki I, Gras E, Faller P. Two functions, one molecule: A metal-binding and a targeting moiety to combat Alzheimer’s disease. Chembiochem. 2010; 11(7):950-3. https://doi.org/10.1002/cbic.201000102 DOI: https://doi.org/10.1002/cbic.201000102

Alper G, Girgin FK, Ozgönül M, Menteş G, Ersöz B. MAO inhibitors and oxidant stress in aging brain tissue. Eur Neuropsychopharmacol. 1999; 9(3):247-52. https://doi.org/10.1016/S0924-977X(98)00035-2 DOI: https://doi.org/10.1016/S0924-977X(98)00035-2

Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, et al. Mitochondria-ros crosstalk in the control of cell death and aging. J Signal Transduct. 2012; 2012. https://doi.org/10.1155/2012/329635 DOI: https://doi.org/10.1155/2012/329635

Adefegha SA, Dada FA, Oyeleye SI, Oboh G. Effects of berberine on cholinesterases and monoamine oxidase activities, and antioxidant status in the brain of Streptozotocin (STZ)-induced diabetic rats. J Basic Clin Physiol Pharmacol. 2021; 33(4):389-97. https://doi.org/10.1515/jbcpp-2020-0173 DOI: https://doi.org/10.1515/jbcpp-2020-0173

Emory H, Mizrahi N. Monoamine oxidase inhibition in a patient with type 1 diabetes and depression. J Diabetes Sci Technol. 2016; 10:1203-4. https://doi.org/10.1177/1932296816638106 DOI: https://doi.org/10.1177/1932296816638106