Prohibitin-1 is an ACTH-Regulated Protein in Human and Mouse Adrenocortical Cells and Plays a Role in Corticosteroid Production

Jump To References Section

Authors

  • Department of Internal Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 3P4 ,CA
  • 1Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4 ,CA
  • Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, R3E 3P4 ,CA

DOI:

https://doi.org/10.18311/jer/2023/34993

Keywords:

Adrenal Cortex, Adrenocorticotrophic Hormone, Cholesterol, Corticosterone, Mitochondria

Abstract

Cell-intrinsic early events involved in different trophic hormone-induced steroidogenesis in their respective steroidogenic cell type are very similar. For example, the activation of the cAMP-PKA signaling pathway in response to trophic hormone stimulation and, subsequently, cholesterol transport to the mitochondria to initiate steroidogenesis is common to them. Recently, we have found that an evolutionarily conserved protein, prohibitin-1 (PHB1), is regulated by Luteinizing Hormone (LH) in murine Leydig cells and plays a role in interconnected cell signaling and mitochondrial steps pertaining to testosterone production. Among the primary steroidogenic tissues, PHB1 expression levels are highest in the adrenal cortex (The Human Protein Atlas); however, its regulation and role in adrenocortical cells are virtually unknown. We investigated the regulation and the role of PHB1 in adrenocortical cells in vitro using human HAC15 and mouse Y-1 cell culture models. It was found that Adrenocorticotrophic Hormone (ACTH) stimulation upregulates PHB1 levels in adrenocortical cells in a time-dependent manner. A similar effect on PHB1 levels was also observed in response to dibutyryl-cAMP stimulation, a cell-permeable analogue of cAMP (the second messenger for ACTH action). Moreover, manipulating PHB1 levels in adrenocortical cells affected mitochondria, lysosomes, and lipid droplet characteristics, modulated phospho-PKA and phospho-ERK1/2 levels, and altered corticosteroid production. This finding suggests that ACTH regulates PHB1 in adrenocortical cells and plays a role in corticosteroid production, which was previously unknown.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-09-12

How to Cite

Mishra, S., Sidhu, S. K., & Bassi, G. (2023). Prohibitin-1 is an ACTH-Regulated Protein in Human and Mouse Adrenocortical Cells and Plays a Role in Corticosteroid Production. Journal of Endocrinology and Reproduction, 27(3), 199–210. https://doi.org/10.18311/jer/2023/34993

Issue

Section

Research Article Presented at SRBCE 2023

 

References

Carroll TB, Aron DC, Findling JW, Tyrrell JB. Glucorticoids and adrenal androgens. In: Gardner D and Shoback D (eds), Greenspan’s Basic and Clinical Endocrinology (9th). McGraw-Hill Companies; 2011. p. 285-327.

Stewart PM, Krone N. The adrenal cortex. In: Melmed S, Polonsky KS, P. Reed Larsen PR, Kronenberg HM (eds), Williams Textbook of Endocrinology (12th ed). Saunders Elsevier Canada; 2011. p. 479-544. https://doi.org/10.1016/B978-1-4377-0324-5.00015-8 DOI: https://doi.org/10.1016/B978-1-4377-0324-5.00015-8

Spencer RL, Deak T. A user’s guide to HPA axis research. Physiol Behav. 2017; 178:43-65. https://doi.org/10.1016/j.physbeh.2016.11.014 DOI: https://doi.org/10.1016/j.physbeh.2016.11.014

Lightman SL, Birnie MT, Conway-Campbell BL. Dynamics of ACTH and cortisol secretion and implications for disease. Endocr Rev. 2020; 41. https://doi.org/10.1210/endrev/bnaa002 DOI: https://doi.org/10.1210/endrev/bnaa002

Li LA, Xia D, Wei S, J. Hartung, Ru-Qian Zhao. Characterization of adrenal ACTH signaling pathway and steroidogenic enzymes in Erhualian and Pietrain pigs with different plasma cortisol levels. Steroids. 2008; 73:806-14. https://doi.org/10.1016/j.steroids. 2008.03.002 DOI: https://doi.org/10.1016/j.steroids.2008.03.002

Richter-Dennerlein R, Korwitz A, Haag M, Tatsuta T, Dargazanli S, Baker M, et al. DNAJC19, a mitochondrial cochaperone associated with cardiomyopathy, forms a complex with prohibitins to regulate cardiolipin remodeling. Cell Metab. 2014; 20:158-71. https://doi.org/10.1016/j.cmet.2014.04.016 DOI: https://doi.org/10.1016/j.cmet.2014.04.016

Osman C, Merkwirth C, Langer T. Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci. 2009; 122:3823-30. https://doi.org/10.1242/jcs.037655 DOI: https://doi.org/10.1242/jcs.037655

Christie DA, Lemke CD, Elias IM, Chau LA, Kirchhof MG, Li B, et al. Stomatin-like protein 2 binds cardiolipin and regulates mitochondrial biogenesis and function. Mol Cell Biol. 2011; 31:3845-56. https://doi.org/10.1128/ MCB.05393-11 DOI: https://doi.org/10.1128/MCB.05393-11

Osman C, Haag M, Potting C, Rodenfels J, Dip PV, Wieland FT, et al. The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J Cell Biol. 2009; 184:583-96. https://doi.org/10.1083/jcb.200810189 DOI: https://doi.org/10.1083/jcb.200810189

Ande SR, Xu Z, Gu Y, Mishra S. Prohibitin has an important role in adipocyte differentiation. Int J Obes (Lond). 2012; 36:1236-44. https://doi.org/10.1038/ijo.2011.227 DOI: https://doi.org/10.1038/ijo.2011.227

Lee JH, Nguyen KH, Mishra S, Nyomba BL. Prohibitin is expressed in pancreatic beta-cells and protects against oxidative and proapoptotic effects of ethanol. FEBS J. 2010; 277(2):488-500. https://doi.org/10.1111/j.1742-4658.2009.07505.x DOI: https://doi.org/10.1111/j.1742-4658.2009.07505.x

Ande SR, Nguyen KH, Padilla-Meier GP, Wahida W, Nyomba BGL, Mishra S. Prohibitin overexpression in adipocytes induces mitochondrial biogenesis, leads to obesity development, and affects glucose homeostasis in a sex-specific manner. Diabetes. 2014; 63:3734-41. https://doi.org/10.2337/db13-1807 DOI: https://doi.org/10.2337/db13-1807

Bassi G, Mishra S. Prohibitin-1 plays a regulatory role in Leydig cell steroidogenesis. iScience. 2022; 25. https://doi.org/10.1016/j.isci.2022.104165 DOI: https://doi.org/10.1016/j.isci.2022.104165

O’Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska-Hilczer J, et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J. 2015; 29(3): 894-910. https://doi.org/10.1096/fj.14-255729 DOI: https://doi.org/10.1096/fj.14-255729

Uhlén M, Fagerberg L, Hallström BM, et al. Tissuebased map of the human proteome. Science. 2015; 23;347(6220):1260419. DOI: https://doi.org/10.1126/science.1260419

Bassi G, Sidhu SK, Mishra S. The intracellular cholesterol pool in steroidogenic cells plays a role in basal steroidogenesis. J Steroid Biochem Mol Biol. 2022; 220. https://doi.org/10.1016/j.jsbmb.2022.106099 DOI: https://doi.org/10.1016/j.jsbmb.2022.106099

Bassi G, Sidhu SK, Mishra S. The expanding role of mitochondria, autophagy and lipophagy in steroidogenesis. Cells. 2021; 10. https://doi.org/10.3390/cells10081851 DOI: https://doi.org/10.3390/cells10081851

Schimmer BP, Cordova M. Corticotropin (ACTH) regulates alternative RNA splicing in Y1 mouse adrenocortical tumor cells. Mol Cell Endocrinol. 2015; 408:5-11. https://doi.org/10.1016/j.mce.2014.09.026 DOI: https://doi.org/10.1016/j.mce.2014.09.026

Ma R, Zhai L, Xu X, Lou T, et al. Ginsenoside Rd attenuates ACTH-induced corticosterone secretion by blocking the MC2R-cAMP/PKA/CREB pathway in Y1 mouse adrenocortical cells. Life Sci. 2020; 245. https://doi.org/10.1016/j.lfs.2020.117337 DOI: https://doi.org/10.1016/j.lfs.2020.117337

Parmar J, Key RE, Rainey WE. Development of an adrenocorticotropin-responsive human adrenocortical carcinoma cell line. J Clin Endocrinol Metab. 2008; 93:4542-6. https://doi.org/10.1210/jc.2008-0903 DOI: https://doi.org/10.1210/jc.2008-0903

Ande SR, Gu Y, Nyomba BL. Insulin induced phosphorylation of prohibitin at tyrosine 114 recruits Shp1.

Biochim Biophys Acta. 2009; 1793:1372-8. https://doi.org/10.1016/j.bbamcr.2009.05.008 DOI: https://doi.org/10.1016/j.bbamcr.2009.05.008

Ande SR, Mishra S. Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem Biophys Res Commun. 2009; 390:1023-8. https://doi.org/10.1016/j.bbrc.2009.10.101 DOI: https://doi.org/10.1016/j.bbrc.2009.10.101

Xu YXZ, Ande SR, Mishra S. Gonadectomy in Mito-Ob mice revealed a sex-dimorphic relationship between prohibitin and sex steroids in adipose tissue biology and glucose homeostasis. Biol Sex Differ. 2018; 9. https://doi.org/10.1186/s13293-018-0196-4 DOI: https://doi.org/10.1186/s13293-018-0196-4

Ande SR, Nguyen KH, Grégoire Nyomba BL, Mishra S. Prohibitin-induced, obesity-associated insulin resistance and accompanying low-grade inflammation causes NASH and HCC. Sci Rep. 2016; 6. https://doi.org/10.1038/srep23608 DOI: https://doi.org/10.1038/srep23608

Kimura E, Armelin HA. Phorbol ester mimics ACTH action in corticoadrenal cells stimulating steroidogenesis, blocking cell cycle, changing cell shape, and inducing c-fos proto-oncogene expression. J Biol Chem. 1990; 265:3518-21. https://doi.org/10.1016/S00219258(19)39799-6 DOI: https://doi.org/10.1016/S0021-9258(19)39799-6

Tatsuta T, Model K, Langer T. Formation of membranebound ring complexes by prohibitins in mitochondria. Mol Biol Cell. 2005; 16:248-59. https://doi.org/10.1091/ mbc.e04-09-0807 DOI: https://doi.org/10.1091/mbc.e04-09-0807

Steglich G, Neupert W, Langer T. Prohibitins regulate membrane protein degradation by the m-AAA protease in mitochondria. Mol Cell Biol. 1999; 19:3435-42. https://doi.org/10.1128/MCB.19.5.3435 DOI: https://doi.org/10.1128/MCB.19.5.3435

Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugarli E, et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol. 2014; 204:919-29. https://doi.org/10.1083/jcb.201308006 DOI: https://doi.org/10.1083/jcb.201308006

Wai T, Saita S, Nolte H, Müller S, König T, RichterDennerlein R, et al. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep. 2016; 17:184456. https://doi.org/10.15252/embr.201642698 DOI: https://doi.org/10.15252/embr.201642698

Gao Z, Daquinag AC, Fussell C, Djehal A, Désaubry L, Kolonin MG. Prohibitin inactivation in adipocytes results in reduced lipid metabolism and adaptive thermogenesis impairment. Diabetes. 2021; 70:2204-12. https://doi.org/10.2337/db21-0094 DOI: https://doi.org/10.2337/db21-0094

Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol. 2005; 7:837-43. https://doi.org/10.1038/ncb1283 DOI: https://doi.org/10.1038/ncb1283

Chowdhury I, Thomas K, Zeleznik A, Thompson WE. Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation. J Mol Endocrinol. 2016; 56:325-36. https://doi.org/10.1530/JME-15-0278 DOI: https://doi.org/10.1530/JME-15-0278

Chowdhury I, Thompson WE, Welch C. Thomas K, Matthews R. Prohibitin (PHB) inhibits apoptosis in rat Granulosa Cells (GCs) through the extracellular signal-regulated kinase 1/2 (ERK1/2) and the Bcl family of proteins. Apoptosis. 2013; 18:1513-25. https://doi.org/10.1007/s10495-013-0901-z DOI: https://doi.org/10.1007/s10495-013-0901-z

Wang Q, Leader A, Tsang BK. Inhibitory roles of prohibitin and chemerin in FSH-induced rat granulosa cell steroidogenesis. Endocrinology. 2013; 154:956-67. https://doi.org/10.1210/en.2012-1836 DOI: https://doi.org/10.1210/en.2012-1836

Zhang J, Sun Z, Wu Q, Shen J. Prohibitin 1 interacts with signal transducer and activator of transcription 3 in T-helper 17 cells. Immunol Lett. 2010; 219:8-14. https://doi.org/10.1016/j.imlet.2019.12.008 DOI: https://doi.org/10.1016/j.imlet.2019.12.008

Yurugi H, Tanida S, Akita K, Ishida A, Toda M, Nakada H. Prohibitins function as endogenous ligands for Siglec-9 and negatively regulate TCR signaling upon ligation. Biochem Biophys Res Commun. 2013; 434:376-81. https://doi.org/10.1016/j.bbrc.2013.03.085 DOI: https://doi.org/10.1016/j.bbrc.2013.03.085

Forti FL, Schwindt TT, Moraes MS, Eichler CB, Armelin HA. ACTH promotion of p27(Kip1) induction in mouse Y1 adrenocortical tumor cells is dependent on both PKA activation and Akt/PKB inactivation. Biochemistry. 2002; 41:10133-40. https://doi.org/10.1021/bi0258086 DOI: https://doi.org/10.1021/bi0258086

Ande SR, Mishra S. Palmitoylation of prohibitin at cysteine 69 facilitates its membrane translocation and interaction with Eps 1065 15 homology domain protein 2 (EHD2). Biochem Cell Biol. 2010; 88:553-8. https://doi.org/10.1139/O09-177 DOI: https://doi.org/10.1139/O09-177

Huber TB, Schermer B, Müller RU, Höhne M, Bartram M, Calixto A, et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci USA. 2006; 103:17079-86. https://doi.org/10.1073/pnas.0607465103 DOI: https://doi.org/10.1073/pnas.0607465103

Browman DT, Resek ME, Zajchowski LD, Robbins SM. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J Cell Sci. 2006; 119:3149-60. https://doi.org/10.1242/jcs.03060 DOI: https://doi.org/10.1242/jcs.03060

Brasaemle DL, Dolios G, Shapiro L, Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem. 2004; 279: 46835-42. https://doi.org/10.1074/jbc.M409340200 DOI: https://doi.org/10.1074/jbc.M409340200