Impact of Oxidative Stress on Male Reproduction: Amelioration by Melatonin and Some Selected Food-Grade Antioxidants
DOI:
https://doi.org/10.18311/jer/2024/35612Keywords:
Antioxidant, Male Infertility, Melatonin, Oxidative Stress, SpermatozoaAbstract
Infertility is a common issue. In India, it has doubled in prevalence, raising health issues in both individuals and communities. Couples who are infertile suffer emotionally, socially, and financially. The Indian Society of Assisted Reproduction estimates that there are up to 27.5 million infertile persons living in India, both men and women. Endocrine disruptors, environmental stress, and abnormalities/imbalances in the body’s natural antioxidant defence mechanism all put male fertility at greater risk. Studies on how high altitude affects male fertility are very few. Recent research has shown that oxidative stress from different sources impairs spermatogenesis and causes an imbalance in the level of male hormones. There are two primary causes of oxidative stress: extrinsic and intrinsic, responsible for free-radical generation. There is an internal antioxidant defence mechanism that scavenges the reactive oxygen species, i.e., free radical generation which neutralizes oxidative stress. These antioxidants are important for the protection of cellular integrity. Apart from the antioxidants, various food supplements like melatonin, vitamin C, vitamin E, carotenoids, cysteines, etc., are suitable antioxidants for improving male fertility. Therefore, there is a great need for information on some clinically examined edible phytooxidants, including melatonin, for amelioration of oxidative stress-induced male infertility. This review focuses on the information available as of now about free radical (ROS)-induced reproductive damages in the plains and the high-altitude regions and the role of various antioxidants, including melatonin, in male infertility.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
References
Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015; 13(1):1-9. https://doi.org/10.1186/ s12958-015-0032-1 PMid: 25928197 PMCid: PMC4424520
Baskaran S, Finelli R, Agarwal A, Henkel R. Diagnostic value of routine semen analysis in clinical andrology. Andrologia. 2021; 53(2). https://doi.org/10.1111/and.13614 PMid: 32400107
Slade P, O’Neill C, Simpson AJ, Lashen H. The relationship between perceived stigma, disclosure patterns, support, and distress in new attendees at an infertility clinic. Hum Reprod. 2007; 22:2309-7. https://doi.org/10.1093/humrep/ dem115 PMid: 17580298
Stearns SC. The evolution of life histories, Vol. 249. Oxford: Oxford University Press; 1992. p.xii
Zera AJ, Harshman LG. The physiology of life history tradeoffs in animals. Ann Rev Ecol Syst. 2001; 32(1):95-126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006
Alvarez AC, Bertrand S, Devevey G, Prost J, Faivre B, Sorci G. Increased susceptibility to oxidative stress as a proximate cost of reproduction. Ecol Lett. 2004; 7(5):363-8. https:// doi.org/10.1111/j.1461- 0248.2004.00594.x
Johnston, SL, Souter DM, Erwin SS, Tolkamp BJ, Yearsley JM, Gordon IJ, et al. Associations between basal metabolic rate and reproductive performance in C57BL/6J mice. J Exp Biol. 2007; 210(1):65-74 https://doi.org/10.1242/jeb.02625 PMid: 17170149.
Hedger MP. The immunophysiology of male reproduction. Knobil and Neill’s Physiology of Reproduction. 2015; 805– 92. https://doi.org/10.1016/B978-0-12-397175-3.00019-3
Ye L, Huang W, Liu S, Cai S, Hong L, Xiao W, et al. Impacts of immunometabolism on male reproduction. Front Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.658432 PMid: 34367130, PMCid: PMC8334851
Angilletta MJ, Sears MW. The metabolic cost of reproduction in an oviparous lizard. Funct Ecol. 2000; 14(1):39-45. https://doi.org/10.1046/j.1365 2435.2000.00387.x
Kohen R, Nyska A. Invited review: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol. 2002; 30(6):620-50. https://doi. org/10.1080/01926230290166724 PMid: 12512863
Aitken RJ, Curry BJ. Redox regulation of human sperm function: From the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal. 2011; 14:367–81. https://doi.org/10.1089/ars.2010.3186 PMid: 20522002
Aitken RJ, Gibb Z, Mitchell LA, Lambourne SR, Connaughton HS, De Iuliis GN. Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biol Reprod. 2012; 87. https://doi. org/10.1095/biolreprod.112.102020 PMid: 22933515
Garratt M, Brooks RC. Oxidative stress and conditiondependent sexual signals: More than just seeing red. Proc Royal Soc B: Biol Sci. 2012; 279(1741):3121-30. https:// doi.org/10.1098/rspb.2012.0568 PMid: 22648155, PMCid: PMC3385731
Sies H, Jones DP. Reactive Oxygen Species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020; 21(7):363-83. https://doi.org/10.1038/ s41580-020-0230-3 PMid: 32231263
Tan BL, Norhaizan ME, Liew WPP. Nutrients and oxidative stress: Friend or foe? Oxid Med Cell Longev. 2018. https:// doi.org/10.1155/2018/9719584 PMid: 29643982 PMCid: PMC5831951
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000; 408(6809):239- 47. https:// doi.org/10.1038/35041687 PMid: 11089981
Miranda-Vilela AL, Alves PC, Akimoto AK, Pereira LCS, Klautau-Guimarães Md, Grisolia CK. The effect of hydrogen peroxide-induced oxidative stress on leukocytes depends on age and physical training in healthy human subjects carrying the same genotypes of antioxidant enzymes’ gene polymorphisms. Am J Hum Biol. 2010; 22:807-12. https:// doi.org/10.1002/ajhb.21086 PMid: 20878976
Henkel RR. Leukocytes and oxidative stress: Dilemma for sperm function and male fertility. Asian J Androl. 2011; 13:43-52. https://doi.org/10.1038/aja.2010.76 PMid: 21076433 PMCid: PMC3739401
Surai PF. Selenium in poultry nutrition 1. Antioxidant properties, deficiency and toxicity. Poult Sci J. 2002; 58(3):333-47. https://doi.org/10.1079/WPS20020026
Sharma RK, Pasqualotto FF, Nelson Thomas AJ, Agarwal A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J Androl. 2001; 22(4):575-83. https://doi. org/10.1002/j.1939-4640.2001.tb02217.x PMid: 11451354
Koppers AJ, Garg ML, Aitken RJ. Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free Radic Biol Med. 2010; 48(1):112- 9. https://doi.org/10.1016/j.freeradbiomed.2009.10.033 PMid: 19837155
Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992; 57(2):409-16. https://doi.org/10.1016/S0015- 0282(16)54855-9 PMid: 1735495
Takeshima T, Kuroda S, Yumura Y. Alternations of sperm protein profiles to elucidate the mechanism of impaired spermatogenesis by cancer chemotherapy. Fertil Steril. 2020; 114(3):e256-7. https://doi.org/10.1016/j. fertnstert.2020.10.022
Czubowicz K, Czapski GA, Cieślik M, Strosznajder RP. Lipoxygenase inhibitors protect brain cortex macromolecules against oxidation evoked by nitrosative stress. Folia Neuropathol. 2010; 48:289-92. PMid: 21225511
Czapski GA, Czubowicz K, Strosznajder RP. Evaluation of the antioxidative properties of lipoxygenase inhibitors. Pharmacol Rep. 2012; 64(5):1179-88. https://doi. org/10.1016/S1734-1140(12)70914-3 PMid: 2323
Cofré E, Peralta OA, Raggi A, los Reyes MD, Sales F, González-Bulnes A, et al. Ram semen deterioration by shortterm exposure to high altitude is prevented by improvement of antioxidant status. Animal. 2018; 12(5):1007-14. https:// doi.org/10.1017/S1751731117002452 PMid: 28988559
Li X-Y, Zhang M-H, Chen Z-W, Chen Z-W. Male reproductive system and simulated high-altitude environment: Preliminary results in rats. Asian J Androl. 2023; 25(3):426-32. PMid: 36510858 https://doi. org/10.4103/aja202290 PMCid: PMC10226506
Kumari P, Bharti VK, Kumar K, Sharma I. Hypobaric hypoxia affects the reproductive physiology of dairy cattle. Anim Reprod Update. 2023; 3(2):6-17. https://doi. org/10.48165/aru.2023.3.2.2
Zepeda AB, Figueroa CA, Calaf GM, Farias JG. Male reproductive system and antioxidants in oxidative stress induced by hypobaric hypoxia. Andrologia. 2014; 46:1–8. https://doi.org/10.1111/and.12039 PMid: 23127143
Cassinelli LM. Biology of fertility; acclimatization of the ovine animals to various altitudes. An Univ nac Mayor de San Marcos. 1953; 36:419–46. PMid: 13197786
Farias JG, Bustos-Obregón E, Orellana R, Bucarey JL, Quiroz E, Reyes JG. Effects of chronic hypobaric hypoxia on testis histology and round spermatid oxidative metabolism. Andrologia. 2005; 37:47–52 https://doi.org/10.1111/j.1439- 0272.2004.00651.x PMid: 15644063
Saxena DK. Effect of hypoxia by intermittent altitude exposure on semen characteristics and testicular morphology of male rhesus monkeys. Int J Biometeorol. 1995; 38(3):137–40. https://doi.org/10.1007/BF01208490 PMid: 7744528
Okumura A, Fuse H, Kawauchi Y, Mizuno I, Akashi T. Changes in male reproductive function after high altitude mountaineering. High Alt Med Biol. 2004; 4(3):349-53. https://doi.org/10.1089/152702903769192304 PMid: 14561240
He J, Cui J, Wang R, Gao L, Gao X, Yang L, et al. Exposure to hypoxia at high altitude (5380 m) for 1 year induces reversible effects on semen quality and serum reproductive hormone levels in young male adults. High Alt Med Biol. 2015; 16(3):216-22. https://doi.org/10.1089/ham.2014.1046 PMid: 26288097
Zheng S, Liu Y, Li P, Tian H. Short-term high-altitude exposure (3600 m) alters the type distribution of sperm deformity. High Alt Med Biol. 2019; 20(2):198-202. https:// doi.org/10.1089/ham.2018.0133 PMid: 30900912
Verratti V, Mrakic-Sposta S, Fusi J, Sabovic I, Franzoni F, Pietrangelo T, et al. Fertility impairment after trekking at high altitude: A proof of mechanisms on redox and metabolic seminal changes. Int J Mol Sci. 2022; 23(16). https://doi.org/10.3390/ijms23169066 PMid: 36012330, PMCid: PMC9409093
Agarwal A, Virk G, Ong C, Du Plessiss SS. Effect of oxidative stress on male reproduction. World J Mens Health. 2014; 32(1):1-17. https://doi.org/10.5534/wjmh.2014.32.1.1 PMid: 24872947, PMCid: PMC4026229
Bansal AK, Bilaspuri GS. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int. 2010. https://doi.org/10.4061/2011/686137 PMid: 20871827, PMCid: PMC2943128
Baumber J, Ball BA, Gravance CG, Medina V, DaviesMorel MCG. The effect of reactive oxygen species on equine sperm motility, viability, acrosomal integrity, mitochondrial membrane potential, and membrane lipid peroxidation. J Androl. 2000; 21(6): 895-902. https://doi. org/10.1002/j.1939-4640.2000.tb03420.x
Chen SJ, Allam JP, Duan YG, Haidl G. Influence of reactive oxygen species on human sperm functions and fertilizing capacity including therapeutical approaches. Arch Gynecol Obstet. 2013; 288(1):191-9. https://doi.org/10.1007/s00404- 013-2801-4 PMid: 23543240
Hazout A, Menezo Y, Madelenat P, Yazbeck C, Selva J, Cohen-Bacrie P. Causes and clinical implications of sperm DNA damages. Gynecol Obstet Fertil. 2008; 36(11):1109- 17. https://doi.org/10.1016/j.gyobfe.2008.07.017 PMid: 18964175
Sikka SC. Relative impact of oxidative stress on male reproductive function. Curr Med Chem. 2001; 8(7):851- 62. https://doi.org/10.2174/0929867013373039 PMid: 11375755
Wishart GJ. Effects of lipid peroxide formation in fowl semen on sperm motility, ATP content and fertilizing ability. Reproduction. 1984; 71(1):113-8. https://doi. org/10.1530/jrf.0.0710113 PMid: 6726671
Sabeur K, Ball BA. Characterization of NADPH oxidase 5 in equine testis and spermatozoa. Reproduction. 2007; 134(2):263-70. https://doi.org/10.1530/REP-06-0120 PMid: 17660236
Laqqan M, Solomayer EF, Hammadeh M. Aberrations in sperm DNA methylation patterns are associated with abnormalities in semen parameters of subfertile males. Reprod Biol. 2017; 17(3):246-51. https://doi.org/10.1016/j. repbio.2017.05.010 PMid: 28566207
Urdinguio RG, Bayón GF, Dmitrijeva M, Torano EG. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility. Hum Reprod. 2015; 30(5):1014–28. https://doi.org/10.1093/humrep/dev053 PMid: 25753583
Sharma U, Conine CC, Shea JM, Boskovic A. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016; 351(6271):391–96. https://doi.org/10.1126/science.aad6780 PMid: 26721685 PMCid: PMC4888079
Hilz S, Modzelewski AJ, Cohen PE, Grimson A. The roles of microRNAs and siRNAs in mammalian spermatogenesis. Development. 2016; 143(17):3061-73. https:// doi.org/10.1242/dev.136721 PMid: 27578177 PMCid: PMC5047671
Ritchie C, Edmund YK. Oxidative stress in the pathophysiology of male infertility. Andrologia. 2021; 53(1). https://doi.org/10.1111/and.13581 PMid: 32323352
Tamura H, Tanabe M, Jozaki M, Taketani T. Antioxidative action of melatonin and reproduction. Glycative Stress Research. 2019; 6(3):192-7.
Lampiao F. Free radicals generation in an in vitro fertilization setting and how to minimize them. World J Obstet Gynecol. 2012; 1(3):29-34. https://doi.org/10.5317/wjog.v1.i3.29
Sharma, RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology. 1996; 48(6):835-50. https://doi. org/10.1016/S0090-4295(96)00313-5 PMid: 8973665
Lanzafame FM, La Vignera S, Vicari E, Calogero AE. Oxidative stress and medical antioxidant treatment in male infertility. Reprod Biomed Online. 2009; 19(5):638-59. https://doi.org/10.1016/j.rbmo.2009.09.014 PMid:20021713
Aminjan HH, Abtahi SR, Hazrati E, Chamanara M. Targeting of oxidative stress and inflammation through ROS/NF-kappaB pathway in phosphine-induced hepatotoxicity mitigation. Life Sci. 2019; 232. https://doi. org/10.1016/j.lfs.2019.116607 PMid: 31254582
Das UB, Mallick M, Debnath JM, Ghosh D. Protective effect of ascorbic acid on cyclophosphamide – Induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl. 2002; 4(3):201-7. PMid: 12364977
Lewis SE, Simon L. Clinical implications of sperm DNA damage. Hum Fertil (Camb). 2010; 13(4):201-7. https://doi. org/10.3109/14647273.2010.528823 PMid: 21117929
Hogarth, CA, Griswold MD. The key role of Vitamin A in spermatogenesis. J Clin Invest. 2010; 120(4):956- 62. https://doi.org/10.1172/JCI41303 PMid: 20364093 PMCid: PMC2846058
Suleiman SA, Ali ME, Zaki ZM. Lipid peroxidation and human sperm motility: Protective role of vitamin E. J Androl. 1996; 17(5):530-7. https://doi.org/10.1002/j.1939-4640.1996. tb01830.x PMid: 8957697
Kelly GS. L-Carnitine: Therapeutic applications of a conditionally-essential amino acid. Altern Med Rev. 1998; 3(5):345-60. PMid:9804680
Modanloo M, Shokrzadeh M. Analyzing mitochondrial dysfunction, oxidative stress, and apoptosis: Potential role of L-carnitine. Iran J Kidney Dis. 2019; 13(2). PMid: 30988244
Agarwal A, Said TM. Carnitines and male infertility. Reprod Biomed Online. 2004; 8(4):376-84. https://doi.org/10.1016/ S1472-6483(10)60920-0 PMid: 15149558
Ng CM, Blackman MR, Wang C, Swerdloff RS. The role of carnitine in the male reproductive system. Ann NY Acad Sci. 2004; 1033(1):177-88. https://doi.org/10.1196/ annals.1320.017 PMid: 15591015
Vicari E, Rubino C, De Palma, Longo G. Antioxidant therapeutic efficiency after the use of carnitine in infertile patients with bacterial or non-bacterialprostato-vesiculoepididymitis. Arch Ital Urol Androl. 2001; 73(1):15-25. PMid: 11505809
Mongioi L, Calogero AE, Vicari E, Condorelli RA. The role of carnitine in male infertility. Andrology. 2016; 4(5):800-7. https://doi.org/10.1111/andr.12191 PMid: 27152678
Aulinas A. Physiology of the pineal gland and melatonin. Endotext [Internet]. 2019. Available from: https://www. ncbi.nlm.nih.gov/books/NBK550972/
Mayo JC, Sainz RM, Antoli I, Herrera F. Melatonin regulation of antioxidant enzyme gene expression. Cell Mol Life Sci. 2002; 59(10):1706-13. https://doi.org/10.1007/ PL00012498 PMid: 12475181
Bharti VK, Srivastava RS. Pineal proteins up-regulate specific antioxidant defense systems in the brain. Oxid Med Cell Longev. 2009; 2(2):88-92. https://doi.org/10.4161/ oxim.2.2.8361
Awad H, Halawa F, Mostafa T, Atta H. Melatonin hormone profile in infertile males. Int J Androl. 2006; 29(3):409-13. https://doi.org/10.1111/j.1365-2605.2005.00624.x PMid: 16371109
Mukherjee S, David A, Yadav S, Baluska F. Salt stress‐induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant. 2014; 152(4):714-28. https://doi.org/10.1111/ppl.12218 PMid: 24799301
Stasica P, Ulanski P, Rosiak JM. Melatonin as a hydroxyl radical scavenger. J Pineal Res. 1998; 25(1):65-6. https://doi. org/10.1111/j.1600-079X.1998.tb00387.x PMid: 9694406
Tan DX, Manchester LC, Reiter RJ, Qi WB. Significance of melatonin in antioxidative defense system: Reactions and products. Biol Signals Recept. 2000; 9(3-4):137-59. https:// doi.org/10.1159/000014635 PMid: 10899700
Zang LY, Cosma G, Gardner H, Vallyathan V. Scavenging of reactive oxygen species by melatonin. Biochim Biophys Acta-Gen Sub. 1998; 1425(3):469-77. https://doi. org/10.1016/S0304-4165(98)00099-3 PMid: 9838210
Noda Y, Mori A, Liburty R, Packer L. Melatonin and its precursors scavenge nitric oxide. J Pineal Res. 1999; 27(3):159-63. https://doi.org/10.1111/j.1600-079X.1999. tb00611.x PMid: 10535765
Zhang H, Squadrito GL, Uppu R, Pryor WA. Reaction of peroxynitrite with melatonin: A mechanistic study. Chem Res Toxicol. 1999; 12(6):526-34. https://doi.org/10.1021/ tx980243t PMid: 10368316
Pablos MI, Guerrero JM, Ortiz GG, Agapito M. Both melatonin and a putative nuclear receptor agonist CGP 52608 stimulate glutathione peroxidase and glutathione reductase activities in mouse brain in vivo. Neuroendocrinol Lett. 1997; 18:49-58.
Reiter RJ, Tang L, Garcia JJ, Muñoz-Hoyos A. Pharmacological actions of melatonin in oxygen radical pathophysiology. Life Sci. 1997; 60(25):2255-71. https:// doi.org/10.1016/S0024-3205(97)00030-1 PMid: 9194681
Hara M, Iigo M, Ohtani-Kaneko R, Nakamura N. Administration of melatonin and related indoles prevents exercise-induced cellular oxidative changes in rats. Biol Signals. 1997; 6(2):90-100. https://doi. org/10.1159/000109113 PMid: 9266096
Garcia JJ, Reiter RJ, Guerrero JM, Escames G. Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Lett. 1997; 408(3):297- 300. https://doi.org/10.1016/S0014-5793(97)00447-X PMid: 9188780
Garcia JJ, Reiter RJ, Ortiz GG, Oh CS. Melatonin enhances tamoxifen’s ability to prevent the reduction in microsomal membrane fluidity induced by lipid peroxidation. J Membr Biol. 1998; 162(1):59-65. https://doi.org/10.1007/ s002329900342 PMid: 9516238