A Critical Review on Nanoparticle Filled Adhesives for Structural Applications
DOI:
https://doi.org/10.18311/jmmf/2022/31056Keywords:
Nanoparticles, Adhesives, Structural Application.Abstract
The objective of this review paper is to highlight some of the noteworthy research that has been done on the use of nanoparticles (NPs) to improve the performance of adhesively bonded joints (ABJs) against delamination initiation and propagation. Various nanoparticle applications, such as carbon-based, ceramic-based, and mineral-based nanoparticles, are covered. Interlaminar shear strength, fracture toughness, and fracture energy are the major parameters that have been considered for enhancing FRP delamination and fatigue resistance.The reported results indicatethat the inclusion of NPs in polymeric matrices leads to improvement of various material properties,even though some discrepancies in the results have been noted. Notwithstanding, additional researchis required to address some of the issues that have not yet been tackled.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of Mines, Metals and Fuels
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Cheng, J., & Taheri, F. (2006). A smart single-lap adhesive joint integrated with partially distributed piezoelectric patches. International Journal of Solids and Structures, 43(5), 1079-1092. DOI: https://doi.org/10.1016/j.ijsolstr.2005.04.020
Cheng, J., Taheri, F., & Han, H. (2006). Strength improvement of a smart adhesive bonded joint system by partially integrated piezoelectric patches. Journal of Adhesion Science and technology, 20(6), 503-518. DOI: https://doi.org/10.1163/156856106777213285
Kinloch, A. J., & Taylor, A. C. J. Materials Sci. Letters, vol. 22, 1439-1442 (2003) Mechanical and Fracture Properties of Epoxy/Inorganic Micro-and Nano-composites.
Korotcenkov, G. “Fundamentals of Sensing Materials Volume 2: Nanostructured Materials.” (2010).
Yue, Z. R., Jiang, W., Wang, L., Gardner, S. D., & Pittman Jr, C. U. (1999). Surface characterization of electrochemically oxidized carbon fibers. Carbon, 37(11), 1785-1796. DOI: https://doi.org/10.1016/S0008-6223(99)00047-0
Meng, L., Fan, D., Zhang, C., Jiang, Z., & Huang, Y. (2013). The effect of oxidation treatment by KClO3/H2SO4 system on intersurface performance of carbon fibers. Applied surface science, 268, 225-230. DOI: https://doi.org/10.1016/j.apsusc.2012.12.066
Yu, S., Tong, M. N., & Critchlow, G. (2010). Use of carbon nanotubes reinforced epoxy as adhesives to join aluminum plates. Materials & Design, 31, S126-S129. DOI: https://doi.org/10.1016/j.matdes.2009.11.045
Jojibabu, P., Jagannatham, M., Haridoss, P., Ram, G. J., Deshpande, A. P., &Bakshi, S. R. (2016). Effect of different carbon nano-fillers on rheological properties and lap shear strength of epoxy adhesive joints. Composites Part A: Applied Science and Manufacturing, 82, 53-64. DOI: https://doi.org/10.1016/j.compositesa.2015.12.003
Irshidat, M. R., & Al-Saleh, M. H. (2017). Repair of heat-damaged RC columns using carbon nanotubes modified CFRP. Materials and Structures, 50(2), 1-11. DOI: https://doi.org/10.1617/s11527-017-1034-6
Bikiaris, D., Vassiliou, A., Chrissafis, K., Paraskevopoulos, K. M., Jannakoudakis, A., &Docoslis, A. (2008). Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polymer Degradation and Stability, 93(5), 952-967. DOI: https://doi.org/10.1016/j.polymdegradstab.2008.01.033
Otto, D. P. (2007). Synthesis, characterization and pharmaceutical application of selected copolymer nano-particles (Doctoral dissertation, North-West University).
Gude, M. R., Prolongo, S. G., Gómez-del Río, T., & Ureña, A. (2011). Mode-I adhesive fracture energy of carbon fibre composite joints with nanoreinforced epoxy adhesives. International Journal of Adhesion and Adhesives, 31(7), 695-703. DOI: https://doi.org/10.1016/j.ijadhadh.2011.06.016
Bhowmik, S., Benedictus, R., Poulis, J. A., Bonin, H. W., & Bui, V. T. (2009). High-performance nanoadhesive bonding of titanium for aerospace and space applications. International Journal of Adhesion and Adhesives, 29(3), 259-267. DOI: https://doi.org/10.1016/j.ijadhadh.2008.07.002
Hedia, H. S., Allie, L., Ganguli, S., &Aglan, H. (2006). The influence of nanoadhesives on the tensile properties and Mode-I fracture toughness of bonded joints. Engineering fracture mechanics, 73(13), 1826-1832. DOI: https://doi.org/10.1016/j.engfracmech.2006.02.013
Razavi, S. M. J., Ayatollahi, M. R., Giv, A. N., & Khoramishad, H. (2018). Single lap joints bonded with structural adhesives reinforced with a mixture of silica nano-particles and multi walled carbon nanotubes. International Journal of Adhesion and Adhesives, 80, 76-86. DOI: https://doi.org/10.1016/j.ijadhadh.2017.10.007
Fereidoon, A., Kordani, N., Rostamiyan, Y., Ganji, D. D., &Ahangari, M. G. (2010). Effect of carbon nanotubes on adhesion strength of e-glass/epoxy composites and alloy aluminium surface. World Appl Sci J, 9(2), 204-210.
Khan, U., May, P., Porwal, H., Nawaz, K., & Coleman, J. N. (2013). Improved adhesive strength and toughness of polyvinyl acetate glue on addition of small quantities of graphene. ACS applied materials & interfaces, 5(4), 1423-1428. DOI: https://doi.org/10.1021/am302864f
Mukharjee, B. B., &Barai, S. V. (2014). Influence of nano-silica on the properties of recycled aggregate concrete. Construction and Building Materials, 55, 29-37. DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.003
Kinloch, A. J., Lee, J. H., Taylor, A. C., Sprenger, S., Eger, C., & Egan, D. (2003). Toughening structural adhesives via nano-and micro-phase inclusions. The Journal of Adhesion, 79(8-9), 867-873. DOI: https://doi.org/10.1080/00218460309551
Zhou, H., Liu, H. Y., Zhou, H., Zhang, Y., Gao, X., & Mai, Y. W. (2016). On adhesive properties of nano-silica/epoxy bonded single-lap joints. Materials & Design, 95, 212-218. DOI: https://doi.org/10.1016/j.matdes.2016.01.055
Hsieh, T. H., Kinloch, A. J., Taylor, A. C., & Sprenger, S. (2011). The effect of silica nano-particles and carbon nanotubes on the toughness of a thermosetting epoxy polymer. Journal of Applied Polymer Science, 119(4), 2135-2142. DOI: https://doi.org/10.1002/app.32937
Mody, V. V., Siwale, R., Singh, A., & Mody, H. R. (2010). Introduction to metallic nano-particles. Journal of Pharmacy and Bioallied Sciences, 2(4), 282. DOI: https://doi.org/10.4103/0975-7406.72127
Al-Harthi, M., Kahraman, R., Yilbas, B., Sunar, M., & Aleem, B. A. (2004). Influence of water immersion on the single-lap shear strength of aluminum joints bonded with aluminum-powder-filled epoxy adhesive. Journal of adhesion science and technology, 18(15-16), 1699-1710. DOI: https://doi.org/10.1163/1568561042708386
Gilbert, E. N., Hayes, B. S., & Seferis, J. C. (2003). Nano alumina modified epoxy based film adhesives. Polymer Engineering & Science, 43(5), 1096-1104. DOI: https://doi.org/10.1002/pen.10093
Hussain, Z., Tahir, S., Mahmood, K., ALIa, A., ARSHAD, M., Ikram, S., ... &Uddassir, Y. (2020). Synthesis and Characterization of Silver Nano-particles With Epoxy Resin Composites. Digest Journal of Nanomaterials and Biostructures, 15(3), 873-883. DOI: https://doi.org/10.15251/DJNB.2020.153.873
NecatiAtaberk The effect of Cu nano-particle adding on to epoxy-based adhesive and adhesion properties. Sci Rep 10, 11038 (2020). https://doi.org/10.1038/s41598-020-68162-4 DOI: https://doi.org/10.1038/s41598-020-68162-4
Prolongo, S. G., Burón, M., Gude, M. R., Chaos-Morán, R., Campo, M., &Ureña, A. (2008). Effects of dispersion techniques of carbon nano-fibers on the thermo-physical properties of epoxy nanocomposites. Composites Science and Technology, 68(13), 2722-2730. DOI: https://doi.org/10.1016/j.compscitech.2008.05.015
Xu, L. R., Li, L., Lukehart, C. M., & Kuai, H. (2007). Mechanical characterization of nano-fiber-reinforced composite adhesives. Journal of nanoscience and nanotechnology, 7(7), 2546-2548. DOI: https://doi.org/10.1166/jnn.2007.433
Prolongo, S. G., Gude, M. R., Sanchez, J., &Ureña, A. (2009). Nanoreinforced epoxy adhesives for aerospace industry. The Journal of Adhesion, 85(4-5), 180-199. DOI: https://doi.org/10.1080/00218460902881766
Gibson, T., Rice, B., Ragland, W., Silverman, E. M., Peng, H., Strong, K. L., & Moon, D. (2005). Formulation and evaluation of carbon nano-fiber-based conductive adhesives. SAMPE-2005.
Rafiee, M. A., Rafiee, J., Wang, Z., Song, H., Yu, Z. Z., & Koratkar, N. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS nano, 3(12), 3884-3890. DOI: https://doi.org/10.1021/nn9010472
Rafiee, M. A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z. Z., &Koratkar, N. (2010). Fracture and fatigue in graphene nanocomposites. small, 6(2), 179-183. DOI: https://doi.org/10.1002/smll.200901480
Chandrasekaran, S., Sato, N., Tölle, F., Mülhaupt, R., Fiedler, B., & Schulte, K. (2014). Fracture toughness and failure mechanism of graphene based epoxy composites. Composites Science and Technology, 97, 90-99. DOI: https://doi.org/10.1016/j.compscitech.2014.03.014
Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., & Taheri, F. (2015). Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Materials & Design (1980-2015), 66, 142-149. DOI: https://doi.org/10.1016/j.matdes.2014.10.047
Walker, L. S., Marotto, V. R., Rafiee, M. A., Koratkar, N., & Corral, E. L. (2011). Toughening in graphene ceramic composites. ACS nano, 5(4), 3182-3190. DOI: https://doi.org/10.1021/nn200319d
Zeng, Y., Liu, H. Y., Mai, Y. W., & Du, X. S. (2012). Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Composites Part B: Engineering, 43(1), 90-94. DOI: https://doi.org/10.1016/j.compositesb.2011.04.036
Hsieh, T. H., Kinloch, A. J., Masania, K., Sohn Lee, J., Taylor, A. C., & Sprenger, S. (2010). The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nano-particles. Journal of materials science, 45(5), 1193-1210. DOI: https://doi.org/10.1007/s10853-009-4064-9
Kelkar, A. D., Mohan, R., Bolick, R., &Shendokar, S. (2010). Effect of nano-particles and nano-fibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites. Materials Science and Engineering: B, 168(1-3), 85-89. DOI: https://doi.org/10.1016/j.mseb.2010.01.015
Zhou, H., Du, X., Liu, H. Y., Zhou, H., Zhang, Y., & Mai, Y. W. (2017). Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves. Composites Science and Technology, 140, 46-53. DOI: https://doi.org/10.1016/j.compscitech.2016.12.018
Yan, N., Xia, H., Zhan, Y., & Fei, G. (2013). New Insights into Fatigue Crack Growth in Graphene Filled Natural Rubber Composites by Microfocus Hard X Ray Beamline Radiation. Macromolecular Materials and Engineering, 298(1), 38-44. DOI: https://doi.org/10.1002/mame.201200044