QSPR Analysis of Polycyclic Aromatic Hydrocarbons

Jump To References Section

Authors

  • Department of Mathematics, CHRIST (Deemed to be University) Bengaluru, Karnataka ,IN
  • Department of Sciences and Humanities, School of Engineering and Technology, CHRIST (Deemed to be University) Bengaluru, Karnataka ,IN
  • Dept. of Mech. and Automobile Engg. CHRIST (Deemed to be University) Bengaluru, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2022/32009

Keywords:

Equitable Zagreb Index, Polynomial, Polycyclic Aromatic Hydrocarbon.

Abstract

Topological indices serve as a crucial component in chemical graph theory linked with some molecular structure. The First and Second Zagreb Indices are one among the earliest and extensively explored molecular descriptors. The study on equitable zagreb indices have been initiated earlier by Akram Alqesmah, Anwar Alwardi and R. Rangarajan based on the equitable degree of the vertices. In this paper, we introduce the first and second equitable and non-equitable zagreb polynomials and compute the exact values of the respective equitable and non-equitable zagreb indices for polycyclic aromatic hydrocarbons. We have also utilised certain formulations for the determination of the corresponding relative equitable and non-equitable zagreb indices of the chemical graph. Further, QSPR analysis is carried out for the topological indices with regard to the physico-chemical properties of the polycyclic hydrocarbon molecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-08

How to Cite

Sarkar, I., Manjunath, N., & Ramesha, K. (2022). QSPR Analysis of Polycyclic Aromatic Hydrocarbons. Journal of Mines, Metals and Fuels, 70(8A), 49–55. https://doi.org/10.18311/jmmf/2022/32009

Issue

Section

Articles

 

References

(Al-Kenani et al., 2013) Al-Kenani, A. N., Soner, N. D., & Alwardi, A. (2013). Graphs and Degree Equitability. Applied Mathematics, 04(08),1199–1203. DOI: https://doi.org/10.4236/am.2013.48160

(Alqesmah, 2016) Alqesmah, A. Alwardi, and R. Rangarajan. (2016). Equitable and Non-Equitable Zagreb Indices of Graphs. International Journal of Mathematics And its Applications, 4(2), 57–65.

(Anitha et al., 2009) Anitha, A., Arumugam, S., & Sampathkumar, E. (2009). Degree Equitable Sets in a Graph. In International J.Math. Combin (Vol. 3), 32-47.

(Farahani, 2013) Farahani, M. R. (2013). Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons PAHs. In Journal of Chemica Acta (Vol. 2).

(Gutman et al., 2020) Gutman, I., Milovanoviæ, E., & Milovanoviæ, I. (2020). Beyond the Zagreb indices. AKCE International Journal of Graphs and Combinatorics, 17(1), 74–85. DOI: https://doi.org/10.1016/j.akcej.2018.05.002

(Gutman & Trinajstiæ, 1972) Gutman, I., & Trinajstiæ, N. (1972). Graph theory and molecular orbitals. Total ð-electron energy of alternant hydrocarbons. Chemical Physics Letters, 17(4), 535–538. DOI: https://doi.org/10.1016/0009-2614(72)85099-1

(Wiener, 1947) Wiener, H. (1947). Structural Determination of Paraffin Boiling Points. Journal of the American Chemical Society, 69(1), 17–20. DOI: https://doi.org/10.1021/ja01193a005

(Zhou, 2004) Zhou, B. (2004). Zagreb indices. MATCH Commun. Math. Comput. Chem., 52(1), 113-118.

(Zhou & Gutman, 2005) Zhou, B., & Gutman, I. (2005). Further properties of zagreb indices. MATCH Commun. Math. Comput. Chem., 54(1), 233–239.