Design and Development of an IoT Kit To Predict Cutting Tool Life and Generate Auto Inventory
DOI:
https://doi.org/10.18311/jmmf/2022/32934Keywords:
Machining, IoT, Cutting tool life, TemperatureAbstract
For the best tool life, machining precision, and maintenance, a cutting tool life prediction is crucial. As a result, an online smart diagnosis service must be created to establish an auto inventory and anticipate the cutting tool life based on temperature data. Due to the fast-cutting velocity and high work material strength, diffusion wear becomes predominant when the cutting temperature rises significantly. Based on sensorial data gathered at the factory level, knowledge-based algorithms conduct online-based inspections on utilized tool life including tool breakage occurrence. Because heat load influences tool wear rate, a thermistor is fitted to the cutting tool to alert the database server when the temperature rises. based on the data.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
A. Caggiano, Cloud-based manufacturing process monitoring for smart diagnosis services, International Journal of Computer Integrated Manufacturing. 31 (7) (2018) 612–623. DOI:10.1080/0951192X.2018.1425552 DOI: https://doi.org/10.1080/0951192X.2018.1425552
R.W.L. Ip et al., An automatic system designed for the monitoring of cutting tools using real-time control concepts and fuzzy approaches, International Journal of Computer Integrated Manufacturing. 15 (5) (2002) 379–393. DOI: 10.1080/09511920110077511 DOI: https://doi.org/10.1080/09511920110077511
S. Shankar, T. Mohanraj, and R. Rajasekar, Prediction of cutting tool wear during milling process using artificial intelligence techniques, International Journal of Computer Integrated Manufacturing. 32 (2) (2018) 174– 182. DOI:10.1080/0951192X.2018.1550681 DOI: https://doi.org/10.1080/0951192X.2018.1550681
Y. Liu et al., Cloud manufacturing: key issues and future perspectives, International Journal of Computer Integrated Manufacturing. 32 (9) (2019) 858–874. DOI:10.1080/0951192X.2019.1639217 DOI: https://doi.org/10.1080/0951192X.2019.1639217
N. Tapoglou et al., Cloud-Based Platform for Optimal Machining Parameter Selection Based on Function Blocks and Real-Time Monitoring, Journal of Manufacturing Science and Engineering. 137 (4) (2015). DOI: 10.1115/1.4029806 DOI: https://doi.org/10.1115/1.4029806
X. Xu, From cloud computing to cloud manufacturing, Robotics and Computer-Integrated Manufacturing. 28 (1) (2012) 75–86. DOI: 10.1016/j.rcim.2011.07.002 DOI: https://doi.org/10.1016/j.rcim.2011.07.002
Pavel Kovac, et.al, using the temperature method for the prediction of tool life in sustainable production, Measurement. 133 (2019) 320-327, DOI: https://doi.org/ 10.1016/j.measurement. 2018.09.074 DOI: https://doi.org/10.1016/j.measurement.2018.09.074
Fei Tao et al., IoT-Based Intelligent Perception and Access of Manufacturing Resource Toward Cloud Manufacturing, IEEE Transactions on Industrial Informatics. 10 (2) (2014) 1547–1557. DOI: 10.1109/ TII.2014.2306397 (2013) DOI: https://doi.org/10.1109/TII.2014.2306397
S. Vaidyanathan, Predicting Tool-Life Equation from Temperature Measurement, International Journal of Production Research. 8 (1) (1970) 51–57. DOI: https:/ /doi.org/10.1080/00207547008929828 DOI: https://doi.org/10.1080/00207547008929828
C.E. Leshock and Y.C. Shin, Investigation on Cutting Temperature in Turning by a Tool-Work Thermocouple Technique, Journal of Manufacturing Science and Engineering. 119 (4A) (1997) 502–508. DOI: http:// manufacturingscience.asmedigitalcollection.asme.org/ on 01/28/2016 DOI: https://doi.org/10.1115/1.2831180
T.S. Ogedengbe et al., The Effects of Heat Generation on Cutting Tool and Machined Workpiece, Journal of Physics: Conference Series. 1378 (2) (2019) 022012.DOI: https://doi.org/10.1088/1742-6596/1378/2/022012 DOI: https://doi.org/10.1088/1742-6596/1378/2/022012
W. H. Wang a, G. S. Hong a, Y. S. Wong a & K. P. Zhu, Sensor fusion for online tool condition monitoring in milling, International Journal of Production Research. 45 (21) (2007) 5095–5116. DOI: 10.1080/ 00207540500536913 DOI: https://doi.org/10.1080/00207540500536913
Z. Vagnorius, M. Rausand, and K. Sørby, Determining optimal replacement time for metal cutting tools, European Journal of Operational Research. 206 (2) (2010) 407–416. DOI: 10.1016/j.ejor.2010.03.023 DOI: https://doi.org/10.1016/j.ejor.2010.03.023
K.-S. Wang, W.-S. Lin, and F.-S. Hsu, A New Approach for Determining the Reliability of a Cutting Tool, The International Journal of Advanced Manufacturing Technology. 17 (10) (2001) 705–709. DOI: https:// doi.org/10.1007/s001700170114 DOI: https://doi.org/10.1007/s001700170114
A.V. Antsev, Cutting tool life prediction in case of rough machining by the fracture model, Materials
Today: Proceedings. 19 (2019) 2148–2151. DOI: https://doi.org/10.1016/j.matpr.2019.07.229 DOI: https://doi.org/10.1016/j.matpr.2019.07.229
P.G. Maropoulos and B. Alamin, Integrated tool life prediction and management for an intelligent tool selection system, Journal of Materials Processing Technology. 61 (1–2) (1996) 225–230. DOI: https://doi.org/10.1016/0924-0136(96)02491-0 DOI: https://doi.org/10.1016/0924-0136(96)02491-0
17.R. Sharma et al., Iot monitoring lathe machine performance, Materials Today: Proceedings. (2021). DOI: https://doi.org/10.1016/j.matpr.2021.07.300 DOI: https://doi.org/10.1016/j.matpr.2021.07.300