Analytical Study of 2D Integrated Microcantilever Pressure Sensing of Fluid for Healthcare Application

Jump To References Section

Authors

  • FlexMEMS Research Center, Department of Electronics & Communication Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan ,IN
  • Department of Computer Science and Engineering, Graphic Era Deemed to be University Dehradun, Dehradun 248001, Uttarakhand ,IN
  • FlexMEMS Research Center, Department of Electronics & Communication Engineering, Manipal University Jaipur, Jaipur-303007, Rajasthan ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/33918

Keywords:

Microcantilever, Microfluidic, Pressure Sensing, Velocity, T-Microcantilever, Cutoff Position.

Abstract

The proposed work focusses on the 2D design and modelling of integrated microcantilever in microchannel for the analysis of fluid pressure. In order to compute the microfluidic pressure in microchannel at various angles, fluid structure interaction is analyzed using the finite element method. With a fluid flow rate of 4.33 cm/s, a 2D integrated microcantilever can optimize both fluid pressure and microcantilever deflection. The novelty of the microfluidic pressure sensing mechanism allows pressure of fluid to be sensed in a microchannel without connecting any electrical method such as piezoresistor or piezoelectric approach. The objective of the research is to integrate a microcantilever into a microchannel to reduce setup complexity and procedure cost. Maximum deflection of the 2D T-microcantilever achieved 10.30µm at, pressure at the tip of T-microcantilever 10.89 Pa, fluid velocity 0.00309 m/sec, and Reynolds number is 1.22.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-06-01

How to Cite

Saxena, A., Kumar, M., & Singh, K. (2023). Analytical Study of 2D Integrated Microcantilever Pressure Sensing of Fluid for Healthcare Application. Journal of Mines, Metals and Fuels, 71(4), 485–492. https://doi.org/10.18311/jmmf/2023/33918

Issue

Section

Articles

 

References

Beebe, D. J., Mensing, G. A., & Walker, G. M. (2002): Physics and applications of microfluidics in biology. Annual review of biomedical engineering, 4(1), 261-286.

Shin, J. H., Lee, G. J., Kim, W., & Choi, S. (2016): A stand-alone pressure-driven 3D microfluidic chemical sensing analytic device. Sensors and Actuators B: Chemical, 230, 380-387.

Shields IV, C. W., Ohiri, K. A., Szott, L. M., & López, G. P. (2017): Translating microfluidics: Cell separation technologies and their barriers to commercialization. Cytometry Part B: Clinical Cytometry, 92(2), 115-125.

Dong, R., Liu, Y., Mou, L., Deng, J., & Jiang, X. (2019): Microfluidics based biomaterials and biodevices. Advanced Materials, 31(45), 1805033.

Saxena, A., Kumar, M., Gupta, A., Shrivastava, A., & Singh, K. (2021, August): Optimization of Microfluidic Pressure Sensing Mechanism Integrated Microcantilever in Microchannel. In 2021 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT) (pp. 361-365). IEEE.

Lien, V., & Vollmer, F. (2007): Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab on a Chip, 7(10), 1352-1356.

Quist, A., Chand, A., Ramachandran, S., Cohen, D., & Lal, R. (2006): Piezoresistive cantilever based nanoflow and viscosity sensor for microchannels. Lab on a Chip, 6(11), 1450-1454.

Pinto, R. M., Chu, V., & Conde, J. P. (2020): Label-free biosensing of DNA in microfluidics using amorphous silicon capacitive micro-cantilevers. IEEE Sensors Journal, 20(16), 9018-9028.

Noeth, N., Keller, S. S., & Boisen, A. (2014): Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems. Sensors, 14(1), 229-244.

Basu, A. K., Basu, A., & Bhattacharya, S. (2020): Micro/nano fabricated cantilever based biosensor platform: A review and recent progress. Enzyme and Microbial Technology, 139, 109558.

Ricciardi, C., Canavese, G., Castagna, R., Ferrante, I., Ricci, A., Marasso, S. L., & Bussolino, F. (2010): Integration of microfluidic and cantilever technology for biosensing application in liquid environment. Biosensors and Bioelectronics, 26(4), 1565-1570.

Kuoni, A., Holzherr, R., Boillat, M., & de Rooij, N. F. (2003). Polyimide membrane with ZnO piezoelectric thin film pressure transducers as a differential pressure liquid flow sensor. Journal of micromechanics and microengineering, 13(4), S103.

Johansson, A., Calleja, M., Rasmussen, P. A., & Boisen, A. (2005): SU-8 cantilever sensor system with integrated readout. Sensors and Actuators A: Physical, 123, 111-115.

Raj, A., Suthanthiraraj, P., & Sen, A. K. (2018): Pressure-driven flow through PDMS-based flexible microchannels and their applications in microfluidics. Microfluidics and Nanofluidics, 22(11), 1-25.

Nezhad, A. S., Ghanbari, M., Agudelo, C. G., Packirisamy, M., Bhat, R. B., & Geitmann, A. (2012): PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sensors journal, 13(2), 601-609.

Kamat, A. M., Zheng, X., Jayawardhana, B., & Kottapalli, A. G. P. (2020): Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding. Nanotechnology, 32(9), 095501.

Shen, F., Ai, M., Ma, J., Li, Z., & Xue, S. (2020): An easy method for pressure measurement in microchannels using trapped air compression in a one-end-sealed capillary. Micromachines, 11(10), 914.

Johansson, A., Calleja, M., Rasmussen, P. A., & Boisen, A. (2005): SU-8 cantilever sensor system with integrated readout. Sensors and Actuators A: Physical, 123, 111-115.

Saxena, A., Kumar, M., & Singh, K. (2022): Analytical Study of Fluid Pressure-Sensing Mechanism in Microchannel for Microfluidic Device. In Technology Innovation in Mechanical Engineering (pp. 1045-1053). Springer, Singapore.

Noeth, N., Keller, S. S., & Boisen, A. (2014): Integrated cantilever-based flow sensors with tunable sensitivity for in-line monitoring of flow fluctuations in microfluidic systems. Sensors, 14(1), 229-244.

Bungartz, H. J., & Schäfer, M. (Eds.). (2006): Fluid-structure interaction: modelling, simulation, optimisation (Vol. 53). Springer Science & Business Media.

Rao, K. S., Sravani, K. G., Yugandhar, G., Rao, G. V., & Mani, V. N. (2015). Design and analysis of fluid structure interaction in a horizontal Micro Channel. Procedia Materials Science, 10, 768-788.

Saxena, A., & Agrawal, V. K. (2017): Comparative Study of Cantilever RF MEMS Switch. Materials Today: Proceedings, 4(9), 10328-10331

Tezduyar, T. E. (2003): Stabilized finite element methods for computation of flows with moving boundaries and interfaces. Lecture Notes on Finite Element Simulation of Flow Problems (Basic-Advanced Course), Japan Society of Computational Engineering and Sciences, Tokyo, Japan.

Burger, J., Haldenwang, R., & Alderman, N. (2010): Friction factor-Reynolds number relationship for laminar flow of non-Newtonian fluids in open channels of different cross-sectional shapes. Chemical Engineering Science, 65(11), 3549-3556.

Singh, K., Akhtar, S., Varghese, S., & Akhtar, J. (2014): Design and development of MEMS pressure sensor characterization setup with low interfacing noise by using NI-PXI system. In Physics of Semiconductor Devices (pp. 449-451). Springer, Cham.