Synthesis of TiO2 and MgAl2O4 Nano Composites for the Enhancement of Antibacterial Applications

Jump To References Section

Authors

  • Department of Physics, Presidency University, Bangalore – 560064, Kanataka, India ,IN
  • Department of Physics, Presidency University, Bangalore – 560064, Kanataka, India ,IN

Keywords:

Antibacterial Activity, Gram Positive and Negative Bacteria, Metal Oxides, Sol-Gel Method

Abstract

In this study, nano composites of titanium dioxide and magnesium aluminate samples were synthesized using the chemical sol-gel method. Investigations are conducted on the antibacterial behavior of a low concentration of transition metal oxides like TiO2, with pre-transition metal oxides, such as MgO and Al2O3. The goal of the current work is to apply various nano composite samples of (TiO2)x and MgAl2O4, with 4 and 10 wt% of TiO2 in MgAl2O4, respectively, for antibacterial applications. The composite samples were examined using Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and the X-ray diffraction pattern. Gramme - positive bacteria S. aureus and B. subtilis, as well as gramme-negative bacteria P. aeruginosa and S. typhimurium, were tested for in the samples' antibacterial behaviour.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-10-03

How to Cite

Bhargavi, K. S., & Bose, A. (2023). Synthesis of TiO<sub>2</sub> and MgAl<sub>2</sub>O<sub>4</sub> Nano Composites for the Enhancement of Antibacterial Applications. Journal of Mines, Metals and Fuels, 71(8), 1068–1073. Retrieved from https://informaticsjournals.co.in/index.php/jmmf/article/view/35042

Issue

Section

Articles

 

References

Foster HA, Ditta IB, Varghese S, Steele A. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 2011; 90:1847-1868.

Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A. Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater. 2005; 15(10):1708-1715.

Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J Mater Chem. 2012; 22(47):24610-617.

Regiel-Futyra A, Kus-Liśkiewicz M, Sebastian V, Irusta S, Arruebo M, Kyzioł A, Stochel G. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm-forming microbes. RSC Adv. 2017; 7(83):52398-413.

Dickson RM, Lyon LA. Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B. 2000; 104(26):6095-98.

Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ. Metal oxide nanoparticles as bactericidal agents.

Langmuir. 2002; 18(17):6679-86.

Xu B-Q, Wei J-M, Wang H-Y, Sun K-Q, Zhu Q-M. Nano MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catal Today. 2001; 68(1-3):217-25.

Morris RM, Klabunde KJ. Formation of paramagnetic adsorbed molecules on thermally activated magnesium and calcium oxides. Characteristics of the active surface sites. Inorg Chem. 1983; 22(4):682-7.

Klabunde KJ, Stark J, Koper O, Mohs C, Park D, Decker S, Jiang Y, Lagadic I, Zhang D. Nanocrystals as stoichiometric reagents with unique surface chemistry. J Phys Chem. 1996; 100(30):12142-53.

Iqbal MJ, Ismail B, Rentenberger C, Ipser H. Modification of the physical properties of semiconducting MgAl2O4 by doping with a binary mixture of Co and Zn ions. Mater Res Bull. 2011; 46(12):2271-7.

Ismail B, Hussain ST, Akram S. Adsorption of methylene blue onto spinel magnesium aluminate nanoparticles: adsorption isotherms, kinetic and thermodynamic studies. Chem Eng J. 2013; 219:395-402.

Shiono T, Shiono K, Miyamoto K, Pezzotti G. Synthesis and characterization of MgAl2O4 spinel precursor from a heterogeneous alkoxide solution containing fine MgO powder. J Am Ceram Soc. 2000; 83(1):235-7.

Haghighi F, Roudbar Mohammadi S, Mohammadi P, Hosseinkhani S, Shipour R. Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect Epidemiol Microbiol. 2013; 1(1):33-8.

Roy AS, Parveen A, Koppalkar AR, Prasad MA. Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. J Biomater Nanobiotechnol. 2010; 1(1):37.

Surendran K, Mohanan P, Sebastian M. The effect of glass additives on the microwave dielectric properties of Ba (Mg1/3Ta2/3) O3 ceramics. J Solid State Chem. 2004; 177(11): 4031-46.

Kurien S, Sebastian S, Mathew J, George K. Structural and electrical properties of nano-sized magnesium aluminate. 2004.

Ping LR, Azad AM, Dung TW. Magnesium aluminate (MgAl2O4) spinel produced via self-heat-sustained

(SHS) technique. Mater Res Bull. 2001; 36(7-8):1417-30.

Rufner J, Anderson D, van Benthem K, Castro RH. Synthesis and sintering behavior of ultrafine (<10 nm) magnesium aluminate spinel nanoparticles. J Am Ceram Soc. 2013; 96(7):2077-85.

Matsumura Y, Yoshikata K, Kunisaki S-i, Tsuchido T. Mode of bactericidal action of silver zeolite and its

comparison with that of silver nitrate. Appl Environ Microbiol. 2003; 69(7):4278-81.

Bahadur J, Agrawal S, Panwar V, Parveen A, Pal K. Antibacterial properties of silver-doped TiO2 nanoparticles synthesized via sol-gel technique. Macromol Res. 2016; 24(6):488-93.

Guo B, et al. Sol gel derived photocatalytic porous TiO2 thin films. Surf Coatings Technol. 2005; 198(1-3):24-9.