Selective Laser Melting Parametric Optimization for Microhardness of 17-4 PH Stainless Steel

Jump To References Section

Authors

  • Lincoln University College, 47301 Petaling Jaya, Selangor ,MY
  • School of Science and Engineering, Curtin University Dubai - 345031 ,AE
  • Lincoln University College, 47301 Petaling Jaya, Selangor ,MY
  • Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology, Bengaluru - 560064, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/35128

Keywords:

17-4 PH Stainless Steel, Microhardness, Pareto ANOVA, SLM Process, Taguchi Method

Abstract

The 17-4 PH stainless steel is a structural material possessing inherent properties suitable for employment in industrial applications. Selective Laser Melting (SLM) technology has overcome many shortcomings of conventional processing routes to fabricate structural parts possessing higher hardness and strength. Hardness is the most dominant factor that affects the quality of structural parts. Laser power, scan speed, and hatch distance affect the microhardness of 17-4 PH stainless steel parts. Taguchi method is applied to conduct experiments and perform statistical analysis and optimization for higher microhardness of SLM parts. Laser power showed the highest contribution equal to 87.76%, followed by a scan speed of 12.05% and hatch distance of 0.18% towards microhardness. The Taguchi method determined the optimal conditions (laser power: 300 W, scan speed: 1000 mm/s and hatch distance: 0.08 mm) resulting in a higher microhardness value equal to 351.2 HV.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-01

How to Cite

Sahadevan , P., Selvan, C. P., Bhaumik, A., & Lakshmikantha, A. (2023). Selective Laser Melting Parametric Optimization for Microhardness of 17-4 PH Stainless Steel. Journal of Mines, Metals and Fuels, 71(12), 2512–2519. https://doi.org/10.18311/jmmf/2023/35128
Received 2023-09-17
Accepted 2024-01-10
Published 2023-12-01

 

References

Haleem A, Javaid M. 3D printed medical parts with different materials using additive manufacturing. Clin Epidemiol Glob Health. 2020; 8(1):215-23. https://doi.org/10.1016/j.cegh.2019.08.002 DOI: https://doi.org/10.1016/j.cegh.2019.08.002

Conner BP, Manogharan GP, Martof AN, Rodomsky LM, Rodomsky CM, Jordan DC, et al. Making sense of 3-D printing: Creating a map of additive manufacturing products and services. Addit Manuf. 2014; 1:64-76. https://doi.org/10.1016/j.addma.2014.08.005 DOI: https://doi.org/10.1016/j.addma.2014.08.005

Kumar SA, Prasad RVS. Basic principles of additive manufacturing: Different additive manufacturing technologies. Addit Manuf. 2021:17-35. https://doi.org/10.1016/B978-0-12-822056-6.00012-6 DOI: https://doi.org/10.1016/B978-0-12-822056-6.00012-6

Sabooni S, Chabok A, Feng SC, Blaauw H, Pijper TC, Yang HJ, et al. Laser powder bed fusion of 17-4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties. Addit Manuf. 2021; 46. https://doi.org/10.1016/j.addma.2021.102176 DOI: https://doi.org/10.1016/j.addma.2021.102176

Hashmi AW, Mali HS, Meena A. Improving the surface characteristics of additively manufactured parts: A review. Materials Today: Proceedings; 2021.

Murayama M, Hono K, Katayama Y. Microstructural evolution in a 17-4 PH stainless steel after aging at 400 C. Metall Mater Trans A. 1999; 30(2):345-53. https://doi.org/10.1007/s11661-999-0323-2 DOI: https://doi.org/10.1007/s11661-999-0323-2

Bressan JD, Daros DP, Sokolowski A, Mesquita RA, Barbosa CA. Influence of hardness on the wear resistance of 17-4 PH stainless steel evaluated by the pin-on-disc testing. J Mater Process Technol. 2008; 205(1-3):353-9. https://doi.org/10.1016/j.jmatprotec.2007.11.251 DOI: https://doi.org/10.1016/j.jmatprotec.2007.11.251

Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Materials Science and Engineering: C. 2013; 33(3):1125-31. https://doi.org/10.1016/j.msec.2012.12.004 PMid:23827551 DOI: https://doi.org/10.1016/j.msec.2012.12.004

Arisoy CF, Başman G, Şeşen MK. Failure of a 17-4 PH stainless steel sailboat propeller shaft. Eng Fail Anal. 2003; 10(6):711-17. https://doi.org/10.1016/S1350-6307(03)00041-4 DOI: https://doi.org/10.1016/S1350-6307(03)00041-4

Uddin MJ, Siller HR, Mirshams RA, Byers TA, Rout B. Effects of proton irradiation on nanoindentation strain-rate sensitivity and microstructural properties in L-PBF 17-4 PH stainless steels. Mater Sci Eng: A. 2022; 837. https://doi.org/10.1016/j.msea.2022.142719 DOI: https://doi.org/10.1016/j.msea.2022.142719

Gratton A. Comparison of mechanical, metallurgical properties of 17-4PH stainless steel between Direct Metal Laser Sintering (DMLS) and traditional manufacturing methods; 2012.

Spierings AB, Schoepf M, Kiesel R, Wegener K. Optimization of SLM productivity by aligning 17-4PH material properties on part requirements. Rapid Prototyp J. 2014; 20(6). https://doi.org/10.1108/RPJ-04-2013-0045 DOI: https://doi.org/10.1108/RPJ-04-2013-0045

Hu Z, Zhu H, Zhang H, Zeng X. Experimental investigation on selective laser melting of 17-4PH stainless steel. Opt Laser Technol. 2017; 87:17-25. https://doi.org/10.1016/j.optlastec.2016.07.012 DOI: https://doi.org/10.1016/j.optlastec.2016.07.012

Gu H, Gong H, Pal D, Rafi K, Starr T, Stucker B, Influences of energy density on porosity and microstructure of selective laser melted 17-4PH stainless steel. International Solid Freeform Fabrication Symposium. University of Texas at Austin; 2013.

Rashid R, Masood SH, Ruan D, Palanisamy S, Rashid RR, Brandt M. Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM). J Mater Process Technol. 2017; 249:502-11. https://doi.org/10.1016/j.jmatprotec.2017.06.023 DOI: https://doi.org/10.1016/j.jmatprotec.2017.06.023

Spall JC. An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Technical Digest; 1998.

Razavykia A, Brusa E, Delprete C, Yavari R. An overview of additive manufacturing technologies-A review to technical synthesis in numerical study of selective laser melting. Materials. 2020; 13(17). https://doi.org/10.3390/ma13173895 PMid:32899260 PMCid:PMC7504540 DOI: https://doi.org/10.3390/ma13173895

Suresh AB, Selvan CP, Vinayaka N, Chandrashekarappa MPG, Lakshmikanthan A, Rangappa R, et al. Computational investigations of aluminum-based airfoil profiles of helical shaped vertical axis wind turbines suitable for friction stir joining and processing. Int J Interact Des Manuf. 2023. https://doi.org/10.1007/s12008-022-01181-9 DOI: https://doi.org/10.1007/s12008-022-01181-9

Yap CY, Chua CK, Dong ZL. An effective analytical model of selective laser melting. Virtual Phys Prototyp. 2016; 11(1):21-6. https://doi.org/10.1080/17452759.2015.1133217 DOI: https://doi.org/10.1080/17452759.2015.1133217

Dong G, Wijaya G, Tang Y, Zhao YF. Optimizing process parameters of fused deposition modeling by Taguchi method for the fabrication of lattice structures. Addit Manuf. 2018; 19:62-72. https://doi.org/10.1016/j.addma.2017.11.004 DOI: https://doi.org/10.1016/j.addma.2017.11.004

Yang B, Lai Y, Yue X, Wang D, Zhao Y. Parametric optimization of laser additive manufacturing of Inconel 625 using Taguchi Method and Grey Relational Analysis. Scanning. 2020. https://doi.org/10.1155/2020/9176509 PMid:32582404 PMCid:PMC7306842 DOI: https://doi.org/10.1155/2020/9176509

Shrestha S, Manogharan G. Optimization of binder jetting using Taguchi method. JOM. 2017; 69(3):491-7. https://doi.org/10.1007/s11837-016-2231-4 DOI: https://doi.org/10.1007/s11837-016-2231-4

Camposeco-Negrete C. Optimization of FDM parameters for improving part quality, productivity and sustainability of the process using Taguchi methodology and desirability approach. Prog Addit Manuf. 2020; 5(1):59-65. https://doi.org/10.1007/s40964-020-00115-9 DOI: https://doi.org/10.1007/s40964-020-00115-9

Khorasani A, Gibson I, Awan US, Ghaderi A. The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V. Addit Manuf. 2019; 25:176-86. https://doi.org/10.1016/j.addma.2018.09.002 DOI: https://doi.org/10.1016/j.addma.2018.09.002

Caballero A, Ding J, Ganguly S, Williams S. Wire+ arc additive manufacture of 17-4 PH stainless steel: Effect of different processing conditions on microstructure, hardness, and tensile strength. J Mater Process Technol. 2019; 268:54-62. https://doi.org/10.1016/j.jmatprotec.2019.01.007 DOI: https://doi.org/10.1016/j.jmatprotec.2019.01.007

Sheshadri R, Nagaraj M, Lakshmikanthan A, Chandrashekarappa MPG, Pimenov DY, Giasin K, et al. Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: Taguchi and super ranking concept approaches. J Mater Res Technol. 2021; 14:2586-600. https://doi.org/10.1016/j.jmrt.2021.07.144 DOI: https://doi.org/10.1016/j.jmrt.2021.07.144

Bayat M, Mohanty S, Hattel JH. Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF. Int J Heat Mass Transf. 2019; 139:95-114. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

Most read articles by the same author(s)