Three-dimensional Analysis of Electromagnetic Nanomaterial Flow and Thermal Variations for Forced Convection
DOI:
https://doi.org/10.18311/jmmf/2023/35810Keywords:
Electromagnetic Radiation, Higher-Order Chemical Reaction, NanofluidAbstract
This paper investigates the three-dimensional motion of electromagnetic nanofluid under the influence of heat source/sink, nonlinear heat radiation, magnetic field, and altered Arrhenius equation. Nonlinear stretching in the velocity is considered in the x-direction. Thermophoresis (Nt) and Brownian motion (Nb) are also considered in nanoparticle concentration profiles and temperature analysis. The boundary layer equations are transformed into nonlinear ODEs using suitable similarity transformations. The coupled nonlinear homogeneous system of ordinary differential equations is tackled by the MAPLE software. Non-dimensional system of the equation contains fourteen physical parameters Fr, Nb, M, γ, λ, Rd, δ, Pr, Nt, S, E, Sc, Bi and power index, which are governed by the physical model. Graphs are presented to show the impact of the abovementioned parameters on temperature, concentration and velocity profile. The present study contributes by observing how the aforementioned parameters influence the heat dissipation rate of nanofluids. This study has broad applications in the field of nanofluids like oil production, metal extrusion, heat exchangers, catalytic reactors etc. Also, results for a particular case found good concurrence with earlier work.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME. 1995; 66:99-105.
Buongiorno J. Convective Transport in Nanofluids. Journal of Heat Transfer. 2006; 128(3):240–250. https://doi. org/10.1115/1.2150834 DOI: https://doi.org/10.1115/1.2150834
Makinde OD, Chinyoka T. MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition. Computers & Mathematics with Applications. 2010; 60(3):660–669. https://doi.org/10.1016/j.camwa.2010.05.014 DOI: https://doi.org/10.1016/j.camwa.2010.05.014
Gireesha BJ, Mahanthesh B, Manjunatha PT, Gorla RSR. Numerical solution for hydromagnetic boundary layer flow and heat transfer past a stretching surface embedded in non-Darcy porous medium with fluid-particle suspension. Journal of the Nigerian Mathematical Society. 2015; 34(3):267–285. https://doi.org/10.1016/j. jnnms.2015.07.003 DOI: https://doi.org/10.1016/j.jnnms.2015.07.003
Muhammad T, Alsaedi A, Hayat T, Shehzad SA. A revised model for Darcy-Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. Results in Physics. 2017; 7: 2791–2797. https://doi.org/10.1016/j. rinp.2017.07.052
Rasool G, Shafiq A, Baleanu D. Consequences of Soret–Dufour effects, thermal radiation, and binary chemical reaction on Darcy Forchheimer flow of nanofluids. Symmetry. 2020; 12(9):1421. https://doi.org/10.3390/sym12091421 DOI: https://doi.org/10.3390/sym12091421
Eid MR, Mabood F. Two-phase permeable non-Newtonian cross-nanomaterial flow with Arrhenius energy and entropy generation: Darcy-Forchheimer model. Physica Scripta. 2020; 95(10): 105209. https://doi. org/10.1088/1402-4896/abb5c7. DOI: https://doi.org/10.1088/1402-4896/abb5c7
Hosseinzadeh, K, Gholinia M, Jafari B, Ghanbarpour, A, Olfian H, Ganji DD. Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium. Heat Transfer-Asian Research. 2019; 48(2):744–759. https://doi. org/10.1002/htj.21404 DOI: https://doi.org/10.1002/htj.21404
Vedavathi N, Venkatadri K, Gaffar SA, Dharmaiah G. Entropy analysis of magnetohydrodynamic nanofluid transport from an inverted cone: Buongiorno’s model. Nanoscience and Technology: An International Journal. 2021; 12(4):81–103. https://doi.org/10.1615/ NanoSciTechnolIntJ.2021035659
Vidya Shree V, Rudresha C, Balaji C, Maruthamanikandan S. Effect of MFD viscosity on ferroconvection in a fluid saturated porous medium with variable gravity. Journal of Mines, Metals and Fuels. 2022; 70(3A):98-103. DOI: https://doi.org/10.18311/jmmf/2022/30675
Crane LJ. Flow past a stretching plate. Zeitschrift Für Angewandte Mathematik Und Physik ZAMP. 1970; 21(4):645–647. https://doi.org/10.1007/BF01587695 DOI: https://doi.org/10.1007/BF01587695
Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer. 2010; 53(11–12):2477–2483. https://doi. org/10.1016/j.ijheatmasstransfer.2010.01.032 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
Makinde OD, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. International Journal of Thermal Sciences. 2011; 50(7):1326–1332. https://doi.org/10.1016/j.ijthermalsci.2011.02.019 DOI: https://doi.org/10.1016/j.ijthermalsci.2011.02.019
Cortell R. Effects of viscous dissipation and radiation on the thermal boundary layer over a no linearly stretching sheet Physics Letters A. 2008; 372(5):631–636. https://doi. org/10.1016/j.physleta.2007.08.005 DOI: https://doi.org/10.1016/j.physleta.2007.08.005
Prasad KV, Santhi SR, Datti PS. Non-Newtonian power-law fluid flow and heat transfer over a nonlinearly stretching surface. Applied Mathematics. 2012; 03(05):425–435. https://doi.org/10.4236/am.2012.35065 DOI: https://doi.org/10.4236/am.2012.35065
Mukhopadhay S. Heat transfer analysis for unsteady MHD flow past a non-isothermal stretching surface. Nucl. Eng. Des. 2011; 241:4835-4839. DOI: https://doi.org/10.1016/j.nucengdes.2011.08.057
Vijaya Kumara VM, Aswatha, Banu Prakash Reddy V, Amit Datta D, Balaji V, Ashik AV. A numerical investigation of natural convection in a porous enclosure with lower wall heating. Journal of Mines, Metals and Fuels. 2023; 70(10A):195–201. https://doi.org/10.18311/ jmmf/2022/31225 DOI: https://doi.org/10.18311/jmmf/2022/31225
Srinvasulu T, Bandari S. MHD boundary layer flow of nanofluid over a nonlinear stretching sheet with effect of non-uniform heat source and chemical reaction. Journal of Nanofluids. 2017; 6(4):637–646. https://doi.org/10.1166/ jon.2017.1362 DOI: https://doi.org/10.1166/jon.2017.1362
Elgazery NS. Nanofluids flow over a permeable unsteady stretching surface with non-uniform heat source/sink in the presence of inclined magnetic field. Journal of the Egyptian Mathematical Society. 2019; 27(1). https://doi. org/10.1186/s42787-019-0002-4 DOI: https://doi.org/10.1186/s42787-019-0002-4
Jafar AB, Shafie S, Ullah I. MHD radiative nanofluid flow induced by a nonlinear stretching sheet in a porous medium. Heliyon. 2020; 6(6):e04201. https://doi.org/10.1016/j.heliyon.2020.e04201 DOI: https://doi.org/10.1016/j.heliyon.2020.e04201
Saeed A, Kumam P, Nasir S, Gul T, Kumam W. Nonlinear convective flow of the thin film nanofluid over an inclined stretching surface. Scientific Reports. 2021; 11(1). https:// doi.org/10.1038/s41598-021-97576-x DOI: https://doi.org/10.1038/s41598-021-97576-x
Rasool G, Shafiq A, Alqarni MS, Wakif A, Khan I, Bhutta MS. Numerical scrutinization of Darcy-Forchheimer relation in convective magnetohydrodynamic nanofluid flow bounded by nonlinear stretching surface in the perspective of heat and mass transfer. Micromachines. 2021; 12(4):374. https://doi.org/10.3390/mi12040374 DOI: https://doi.org/10.3390/mi12040374
Abbas N, Rehman KU, Shatanawi W, Malik MY. Numerical study of heat transfer in hybrid nanofluid flow over permeable nonlinear stretching curved surface with thermal slip. International Communications in Heat and Mass Transfer. 2022; 135:106107. https://doi.org/10.1016/j. icheatmasstransfer.2022.106107 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106107
Darcy HPG. Les Fontaines publiques de la Ville de Dijon: exposition et application des Principes à suivre et des formules à employer dans les questions de distribution d’eau, etc; Dalamont: Springtown, TX, USA, 1856.
Whitaker S. The Forchheimer equation: A theoretical development. Transport in Porous Media. 1996; 25(1):27–61. https://doi.org/10.1007/BF00141261 DOI: https://doi.org/10.1007/BF00141261
Sowbhagya. Outlook of density maximum on the onset of Forchheimer-Bénard convection with through flow. Journal of Mines, Metals and Fuels. 2022; 70(8A):32–40. https://doi.org/10.18311/jmmf/2022/32007 DOI: https://doi.org/10.18311/jmmf/2022/32007
Hayat T, Aziz A, Muhammad T, Alsaedi A. Darcy– Forchheimer Three-dimensional flow of Williamson nanofluid over a convectively heated nonlinear stretching surface. Communications in Theoretical Physics. 2017; 68(3):387. https://doi.org/10.1088/0253-6102/68/3/387 DOI: https://doi.org/10.1088/0253-6102/68/3/387
Alzahrani AK, Ullah MZ, Alshomrani AS, Gul T. Hybrid nanofluid flow in a Darcy-Forchheimer permeable medium over a flat plate due to solar radiation. Case Studies in Thermal Engineering. 2021; 26:100955. DOI: https://doi.org/10.1016/j.csite.2021.100955
Muhammad R, Khan MI, Jameel M, Khan NB. Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Computer Methods and Programs in Biomedicine. 2020; 188:105298. https://doi.org/10.1016/j. cmpb.2019.105298 DOI: https://doi.org/10.1016/j.cmpb.2019.105298
Sulochana C, Prasanna Kumar T, Uma MS, Thulasi L. MHD Darcy-Forchheimer hybrid nanofluid flow past a nonlinear stretching surface: Numerical study. IOP Conference Series: Materials Science and Engineering. 2021; 1145(1):012042. https://doi.org/10.1088/1757- 899X/1145/1/012042 DOI: https://doi.org/10.1088/1757-899X/1145/1/012042
Muhammad T, Alsaedi A, Hayat T, Shehzad SA. A revised model for Darcy– Forchheimer three-dimensional flow of nanofluid subject to convective boundary condition. Results Phys. 2017; 7:2791–2797. DOI: https://doi.org/10.1016/j.rinp.2017.07.052
Upreti H, Pandey AK, Kumar M, Makinde OD. Ohmic Heating and non-uniform heat source/sink roles on 3D Darcy–Forchheimer flow of CNTs nanofluids over a stretching surface. Arabian Journal for Science and Engineering. 2020; 45(9):7705–7717. https://doi.org/10.1007/s13369- 020-04826-7 DOI: https://doi.org/10.1007/s13369-020-04826-7
Mishra SR, Sharma RP, Tinker S, Panda GK. Impact of slip and the entropy generation in a Darcy-Forchhimer nanofluid past a curved stretching sheet with heterogeneous and homogenous chemical reactions. Journal of Nanofluids. 2022; 11(1):48–57. https://doi.org/10.1166/jon.2022.1813 DOI: https://doi.org/10.1166/jon.2022.1813
Eid MR, Mahny KL, Al-Hossainy AF. Homogeneousheterogeneous catalysis on electromagnetic radiative Prandtl fluid flow: Darcy-Forchheimer substance scheme. Surfaces and Interfaces. 2021; 24:101119. https://doi. org/10.1016/j.surfin.2021.101119 DOI: https://doi.org/10.1016/j.surfin.2021.101119
Sajid T, Sagheer M, Hussain S, Bilal M. Darcy-Forchheimer flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy. AIP Advances. 2018; 8(3):035102. https://doi.org/10.1063/1.5019218 DOI: https://doi.org/10.1063/1.5019218
Alotaibi H, Eid MR. Thermal analysis of 3D electromagnetic radiative nanofluid flow with suction/blowing: Darcy– Forchheimer scheme. Micromachines. 2021; 12(11):1395. https://doi.org/10.3390/mi12111395 DOI: https://doi.org/10.3390/mi12111395
Shobha KC, Patil Mallikarjun B. Effect of Nonlinear thermal radiation on flow of Williamson nanofluid in a vertical porous channel with heat source or sink by using adomian decomposition method. Journal of Nanofluids. 2022; 11(1):39–47. https://doi.org/10.1166/jon.2022.1822 DOI: https://doi.org/10.1166/jon.2022.1822
Patil PM, Doddagoudar SH, Shankar HF. Influence of nonlinear thermal radiation on mixed convective hybrid nanofluid flow about a rotating sphere. Heat Transfer. 2022; 51(6):5874–5895. https://doi.org/10.1002/htj.22573 DOI: https://doi.org/10.1002/htj.22573
Ullah H, Alsubie A, Fiza M, Hamadneh NN, Islam S, Khan I. Impact of hall current and nonlinear thermal radiation on Jeffrey nanofluid flow in rotating frame. Mathematical Problems in Engineering. 2021; 1–21. https:// doi.org/10.1155/2021/9930017 DOI: https://doi.org/10.1155/2021/9930017
Jaafar A, Waini I, Jamaludin A, Nazar R, Pop I. MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction. Chinese Journal of Physics. 2022; 79:13–27. https://doi.org/10.1016/j.cjph.2022.06.026 DOI: https://doi.org/10.1016/j.cjph.2022.06.026
Ali H, Soleimani H, Yahya N, Khodapanah L, Sabet M, Demiral BMR, Hussain T, Adebayo LL. Enhanced oil recovery by using electromagnetic-assisted nanofluids: A review. Journal of Molecular Liquids. 2020; 309, 113095. https://doi.org/10.1016/j.molliq.2020.113095 DOI: https://doi.org/10.1016/j.molliq.2020.113095
Sheikhpour M, Arabi M, Kasaeian A, Rokn Rabei A, Taherian Z. Role of nanofluids in drug delivery and biomedical technology: methods and applications. Nanotechnology, Science and Applications. 2020; 13:47–59. https://doi.org/10.2147/NSA.S260374 DOI: https://doi.org/10.2147/NSA.S260374
Hasona W, Almalki N, ElShekhipy A, Ibrahim M. Combined effects of thermal radiation and magnetohydrodynamic on peristaltic flow of nanofluids: applications to radiotherapy and thermotherapy of cancer. Current Nanoscience. 2020; 16(1):121–134. https://doi.org/10.2174 /1573413715666190318161351 DOI: https://doi.org/10.2174/1573413715666190318161351