Synthesis and Characterization of Reduced Graphene Oxide Fabricated Over Ruthenium Oxide Through Reflux Method
DOI:
https://doi.org/10.18311/jmmf/2023/36257Keywords:
Characterization, rGO, Reflux Method, rGO/RuO2Abstract
In this present work, graphene supported ruthenium oxide (rGO/RuO2) was synthesized by reflux method. Spectroscopic techniques were used to characterize the synthesized rGO/RuO2 NPs, including Fourier Transform Infrared (FT-IR), Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Energy-Dispersive X-ray (EDAX). Synthesized rGO/RuO2 NPs that were prepared via reflux method at 150 °C for 3 hours showed a paper like structure with an average crystalline sizes of reduced graphene and rGO/RuO2 was found to be 14 and 10.3 nm. Therefore, the reflux synthesis method, as compared to more complex and time-consuming synthesis methods, can be used to easily and quickly produce high-quality, uniform-sized rGO/RuO2 NPs. The synthesized material has a successful application in electrochemical sensors, photocatalyst, antioxidant, hydrogen generation, used as catalyst in mines, minerals and fuels.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett. 2008; 100:016602. https://doi.org/10.1103/ PhysRevLett.100.016602. DOI: https://doi.org/10.1103/PhysRevLett.100.016602
Yin PT, Shah S, Chhowalla M, Lee K-B. Design, synthesis, and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem Rev. 2015; 115:2483–531. https://doi.org/10.1021/cr500537t. DOI: https://doi.org/10.1021/cr500537t
Bi R-R, Wu X-L, Cao F-F, Jiang L-Y, Guo Y-G, Wan L-J. Highly dispersed ruo2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance. J Phys Chem C. 2010; 114:2448–51. https://doi.org/10.1021/jp9116563. DOI: https://doi.org/10.1021/jp9116563
Subhramannia M, Balan BK, Sathe BR, Mulla IS, Pillai VK. Template-assisted synthesis of ruthenium oxide nanoneedles: electrical and electrochemical proper- ties. J Phys Chem C. 2007; 111:16593–600. https://doi. org/10.1021/jp0744836. DOI: https://doi.org/10.1021/jp0744836
Kim J-Y, Kim K-H, Yoon S-B, Kim H-K, Park S-H, Kim K-B. In situ chemical synthesis of ruthenium oxide/ reduced graphene oxide nanocomposites for electrochemical capacitor applications. Nanoscale. 2013; 5:6804. https://doi.org/10.1039/c3nr01233f. DOI: https://doi.org/10.1039/c3nr01233f
McKeown DA, Hagans PL, Carette LPL, Russell AE, Swider KE, Rolison DR. Structure of Hydrous Ruthenium Oxides: Implications for Charge Storage. J Phys Chem B. 1999; 103:4825–32. https://doi.org/10.1021/jp990096n. DOI: https://doi.org/10.1021/jp990096n
Zheng JP, Cygan PJ, Jow TR. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J Electrochem Soc. 1995; 142:2699–703. https://doi. org/10.1149/1.2050077. DOI: https://doi.org/10.1149/1.2050077
Hu C-C, Huang Y-H. Effects of preparation variables on the deposition rate and physicochemical properties of hydrous ruthenium oxide for electrochemical capacitors. Electrochimica Acta. 2001; 46:3431–44. https://doi. org/10.1016/S0013-4686(01)00543-6. DOI: https://doi.org/10.1016/S0013-4686(01)00543-6
Málek J, Watanabe A, Mitsuhashi T. Crystallization kinetics of amorphous RuO2. Thermochimica Acta. 1996; 282–283:131–42. https://doi.org/10.1016/0040- 6031(96)02887-0. DOI: https://doi.org/10.1016/0040-6031(96)02887-0
Kotz R, Lewerenz HJ, Stucki S. XPS Studies of Oxygen Evolution on Ru and RuO2 Anodes. J Electrochem Soc 1983; 130:825–9. https://doi.org/10.1149/1.2119829. DOI: https://doi.org/10.1149/1.2119829
Ghasemi S, Ahmadi F. Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. Journal of Power Sources. 2015; 289:129–37. https://doi.org/10.1016/j.jpow- sour.2015.04.159. DOI: https://doi.org/10.1016/j.jpowsour.2015.04.159
Guo D, Luo Y, Yu X, Li Q, Wang T. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy. 2014; 8:174–82. https://doi.org/10.1016/j. nanoen.2014.06.002. DOI: https://doi.org/10.1016/j.nanoen.2014.06.002
Wu HB, Xia BY, Yu L, Yu X-Y, Lou XW. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun. 2015; 6:6512. https://doi.org/10.1038/ncomms7512. DOI: https://doi.org/10.1038/ncomms7512
Dai C-S, Chien P-Y, Lin J-Y, Chou S-W, Wu W-K, Li P-H, et al. Hierarchically structured Ni3S2 /Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors. ACS Appl Mater Interfaces. 2013; 5:12168–74. https://doi.org/10.1021/ am404196s. DOI: https://doi.org/10.1021/am404196s
Ates M, Yildirim M, Kuzgun O, Ozkan H. The syn- thesis of rGO, rGO/RuO2 and rGO/RuO2/PVK nanocomposites, and their supercapacitors. Journal of Alloys and Compounds. 2019; 787:851–64. https://doi. org/10.1016/j.jallcom.2019.02.126. DOI: https://doi.org/10.1016/j.jallcom.2019.02.126
Mylarappa M, Chandruvasan S, Kantharaju S, Rekha S. Synthesis and characterization of Rgo doped Nb2O5 nano composite for chemical sensor studies. ECS Trans. 2022; 107:269–75. https://doi.org/10.1149/10701.0269ecst. DOI: https://doi.org/10.1149/10701.0269ecst
Mylarappa M, Rekha S, Kantharaju S, Chandruvasan S, Shravana KN. Synthesis and characterization of ZnO and MgO nanoparticles through green approach and their antioxidant properties. ECS Trans. 2022; 107:689– 95. https://doi.org/10.1149/10701.0689ecst. DOI: https://doi.org/10.1149/10701.0689ecst
Mylarappa M, Chandruvasan S, Thippeswamy B, Shravana Kumara KN, Kantharaju S. Clay incorporated ruthenium oxide nanocomposite for electrochemical, sensor, optical, photocatalytic and antioxidant studies. Sustainable Chemistry for the Environment. 2023; 2:100007. https://doi.org/10.1016/j.scenv.2023.100007. DOI: https://doi.org/10.1016/j.scenv.2023.100007
Mylarappa M, Raghavendra N, Surendra BS, Shravana Kumar KN, Kantharjau S. Electrochemical, photocatalytic and sensor studies of clay/MgO nanoparticles. Applied Surface Science Advances. 2022; 10:100268. https://doi.org/10.1016/j.apsadv.2022.100268. DOI: https://doi.org/10.1016/j.apsadv.2022.100268
Cruz M, Gomez C, Duran-Valle CJ, Pastrana-Martínez LM, Faria JL, Silva AMT, et al. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Applied Surface Science. 2017; 416:1013–21. https://doi. org/10.1016/j.apsusc.2015.09.268. DOI: https://doi.org/10.1016/j.apsusc.2015.09.268
Mylarappa M, Chandruvasan S, Harisha KS, Shravana Kumara KN. Ajwain honey loaded CeO2 nano- composite for antioxidant, chemical sensors and photocatalysis studies. Kuwait Journal of Science. 2023:S2307410823001864. https://doi.org/10.1016/j. kjs.2023.10.012. DOI: https://doi.org/10.1016/j.kjs.2023.10.012
Daolio S, Kristóf J, Piccirillo C, Pagnra C, De Battisti A. Investigation of the formation of RuO2 -based mixed oxide coatings by secondary ion mass spectrometry. J Mater Chem. 1996; 6:567–71. https://doi.org/10.1039/ JM9960600567.
Mylarappa M, Chandruvasan S, Harisha KS, Kantharaju S, Prasanna Kumar SG, Shravana Kumara KN. Development of Coriander Honey loaded CeO2 for cyclic voltammetry, chemical sensor, dye purification, and antioxidant properties. Journal of the Taiwan Institute of Chemical Engineers. 2023; 152:105174. https://doi. org/10.1016/j.jtice.2023.105174. DOI: https://doi.org/10.1016/j.jtice.2023.105174
Daolio S, Kristóf J, Piccirillo C, Pagnra C, De Battisti A. Investigation of the formation of RuO2 -based mixed oxide coatings by secondary ion mass spectrometry. J Mater Chem. 1996; 6:567–71. https://doi.org/10.1039/ JM9960600567. DOI: https://doi.org/10.1039/JM9960600567
Chandruvasan S, Madival H, Mylarappa M, Naik ND, Kantharaju S, Bharath S. Investigation of anti- oxidant and photo catalysis of natural honey and cow urine-doped CeO2 nanoparticles fabricated by reflux method. Engineering, Science, and Sustainability. 1st ed., London: CRC Press; 2023, p. 31–6. https://doi. org/10.4324/9781003388982-7. DOI: https://doi.org/10.4324/9781003388982-7
Chen L, Yuan C, Gao B, Chen S, Zhang X. Microwave-assisted synthesis of organic–inorganic poly(3,4-ethylenedioxythiophene)/RuO2·xH2O nano- composite for supercapacitor. J Solid State Electrochem 2009; 13:1925–33. https://doi.org/10.1007/s10008-008- 0777-y. DOI: https://doi.org/10.1007/s10008-008-0777-y
Mylarappa M, Chandruvasan S, Harisha KS, Sharath SC. Synthesis, characterization and electrochemical detec- tion of tartaric acid and grape juice using rGO doped La2O3 nanoparticles. Materials Science and Engineering: B. 2024; 299:116977. https://doi.org/10.1016/j. mseb.2023.116977. DOI: https://doi.org/10.1016/j.mseb.2023.116977
Wang Y, Herron N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem. 1991; 95:525–32. https://doi.org/10.1021/j100155a009. DOI: https://doi.org/10.1021/j100155a009
Mylarappa M, Chandruvasan S, Shravana kumara K N, Sandhya R. Antioxidant, Electrochemical, Photocatalysis and Sensor Studies of rGO Incorporated MgO Nanocomposite. In Review; 2023. https://doi. org/10.21203/rs.3.rs-3378654/v1.
Shubha MB, Manjunatha C, Sudeep M, Chandruvasan S, Sumira Malik and Praveen Sekhar. Development of NiCoO2 nanoparticles based electrochemical sensor with extremely low detection for hazardous 4-nitrophenol. J Electrochem Soc. 2023; 170:067509. https://doi. org/10.1149/1945-7111/acdf89. DOI: https://doi.org/10.1149/1945-7111/acdf89